Вы можете добавить информацию о часовом поясе к скалярной дате и времени и сравнить:
date = pd.to_datetime('2015-02-24').tz_localize('UTC').tz_convert('Asia/Shanghai')
print (date)
2015-02-24 08:00:00+08:00
Или:
date = pd.Timestamp('2015-02-24 08:00:00+08:00')
print (df[df > date])
0 2019-03-05 00:45:36.503277422+08:00
1 2019-03-05 00:46:36.404034571+08:00
2 2019-03-05 00:47:36.434888822+08:00
3 2019-03-05 00:48:36.535496247+08:00
4 2019-03-05 00:49:36.512082457+08:00
5 2019-03-05 00:50:36.515718466+08:00
6 2019-03-05 00:51:36.520325894+08:00
7 2019-03-05 00:52:36.523945647+08:00
8 2019-03-05 00:53:36.548567617+08:00
9 2019-03-05 00:54:36.740268213+08:00
Name: Date-Time, dtype: datetime64[ns, Asia/Shanghai]
А для второго сравнить по времени:
from datetime import time
print (df[df.dt.time > time(0,0,0)])
0 2019-03-05 00:45:36.503277422+08:00
1 2019-03-05 00:46:36.404034571+08:00
2 2019-03-05 00:47:36.434888822+08:00
3 2019-03-05 00:48:36.535496247+08:00
4 2019-03-05 00:49:36.512082457+08:00
5 2019-03-05 00:50:36.515718466+08:00
6 2019-03-05 00:51:36.520325894+08:00
7 2019-03-05 00:52:36.523945647+08:00
8 2019-03-05 00:53:36.548567617+08:00
9 2019-03-05 00:54:36.740268213+08:00
Name: Date-Time, dtype: datetime64[ns, Asia/Shanghai]
Или по timedeltas:
print (df[pd.to_timedelta(df.dt.strftime('%H:%M:%S')) > '00:00:00'])