Я обновил код Tensorflow 1.x до Tensorflow 2.0, но у меня есть некоторые проблемы, которые нужно исправить.Один из них - о массиве против тензора в некоторых частях кода.Я не знаю, как это исправить.
Я пробовал с tf.transpose
, tf.linalg.matrix_transpose
, tf.linalg.transpose
в строке 29, как во внешней, так и во внутренней функции.Также я добавил .eval()
в строку 30, чтобы получить массив np.array, как вы можете видеть в этой последней попытке:
TypeError Traceback (most recent call last)
~/Documents/example.py in <module>
202 soft_gumbel_softmax=False,
203 hard_gumbel_softmax=False,
--> 204 batch_discriminator=False)
205
206 # optimizer
~/Documents/models/gan.py in __init__(self, vertexes, edges, nodes, embedding_dim, decoder_units, discriminator_units, decoder, discriminator, soft_gumbel_softmax, hard_gumbel_softmax, batch_discriminator)
33 with tf.compat.v1.variable_scope('generator'):
34 self.edges_logits, self.nodes_logits = self.decoder(self.embeddings, decoder_units, vertexes, edges, nodes,
---> 35 training=self.training, dropout_rate=self.dropout_rate)
36
37 with tf.compat.v1.name_scope('outputs'):
~/Documents/models/__init__.py in decoder_adj(inputs, units, vertexes, edges, nodes, training, dropout_rate)
28 activation=None), (-1, edges, vertexes, vertexes))
29 edges_logits = tf.transpose(a=(edges_logits + tf.linalg.matrix_transpose(edges_logits)) / 2, perm=(0, 2, 3, 1))
---> 30 edges_logits = tf.compat.v1.layers.dropout(edges_logits.eval(), dropout_rate, training=training)
31
32 with tf.compat.v1.variable_scope('nodes_logits'):
TypeError: descriptor 'transpose' requires a 'numpy.ndarray' object but received a 'Tensor'
Эти последние строки взяты из этой функции:
def decoder_adj(inputs, units, vertexes, edges, nodes, training, dropout_rate=0.):
output = multi_dense_layers(inputs, units, activation=tf.nn.tanh, dropout_rate=dropout_rate, training=training)
with tf.compat.v1.variable_scope('edges_logits'):
edges_logits = tf.reshape(tf.compat.v1.layers.dense(inputs=output, units=edges * vertexes * vertexes,
activation=None), (-1, edges, vertexes, vertexes))
edges_logits = tf.transpose(a=(edges_logits + np.matrix.transpose(edges_logits)) / 2, perm=(0, 2, 3, 1))
edges_logits = tf.compat.v1.layers.dropout(edges_logits, dropout_rate, training=training)
with tf.compat.v1.variable_scope('nodes_logits'):
nodes_logits = tf.compat.v1.layers.dense(inputs=output, units=vertexes * nodes, activation=None)
nodes_logits = tf.reshape(nodes_logits, (-1, vertexes, nodes))
nodes_logits = tf.compat.v1.layers.dropout(nodes_logits, dropout_rate, training=training)
return edges_logits, nodes_logits
Я хотел бы знать, где, в каком формате, почему и как я должен преобразовать входные данные.