# Creating a DataFrame.
from pyspark.sql.functions import col, lit
df = sqlContext.createDataFrame(
[('1','Moritz','Schulz'),('2','Sandra','Schröder')],
('Customer_id','First_Name','Last_Name')
)
df.show()
+-----------+----------+---------+
|Customer_id|First_Name|Last_Name|
+-----------+----------+---------+
| 1| Moritz| Schulz|
| 2| Sandra| Schröder|
+-----------+----------+---------+
Вы можете использовать функцию lit () для добавления пустых столбцов, а после создания вы можете использовать SQL select
, чтобы упорядочить столбцы в нужном вам порядке.
df = df.withColumn('Address',lit(''))\
.withColumn('Email_address',lit(''))\
.withColumn('Phone_no',lit(''))\
.select(
'Customer_id', 'Address', 'First_Name',
'Email_address', 'Last_Name', 'Phone_no'
)
df.show()
+-----------+-------+----------+-------------+---------+--------+
|Customer_id|Address|First_Name|Email_address|Last_Name|Phone_no|
+-----------+-------+----------+-------------+---------+--------+
| 1| | Moritz| | Schulz| |
| 2| | Sandra| | Schröder| |
+-----------+-------+----------+-------------+---------+--------+
Как предлагает пользователь @Pault, более лаконичный и лаконичный способ -
df = df.select(
"Customer_id", lit('').alias("Address"), "First_Name",
lit("").alias("Email_address"), "Last_Name", lit("").alias("Phone_no")
)
df.show()
+-----------+-------+----------+-------------+---------+--------+
|Customer_id|Address|First_Name|Email_address|Last_Name|Phone_no|
+-----------+-------+----------+-------------+---------+--------+
| 1| | Moritz| | Schulz| |
| 2| | Sandra| | Schröder| |
+-----------+-------+----------+-------------+---------+--------+