Исключение в потоке "основной" java.lang.NoSuchMethodError только в Ubuntu - PullRequest
0 голосов
/ 04 мая 2019

У меня есть код ниже:

import java.io.File

import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}

object RDFBenchVerticalPartionedTables {

  def main(args: Array[String]): Unit = {

    println("Start of programm ....  ")

    val conf = new SparkConf().setMaster("local").setAppName("SQLSPARK")
    Logger.getLogger("org").setLevel(Level.OFF)
    Logger.getLogger("akka").setLevel(Level.OFF)
    val sc = new SparkContext(conf)

    sc.setLogLevel("ERROR")

    println("Conf and SC declared...  ")

    val spark = SparkSession
      .builder()
      .master("local[*]")
      .appName("SparkConversionSingleTable")
      .getOrCreate()

    println("SparkSession declared...  ")

    println("Before Agrs.....  ")

    val filePathCSV=args(0)
    val filePathAVRO=args(1)
    val filePathORC=args(2)
    val filePathParquet=args(3)

    println("After Agrs.....  ")

    val csvFiles = new File(filePathCSV).list()

    println("After List of Files Agrs.....  " + csvFiles.length )


    println("Before the foreach ... ")
    csvFiles.foreach{verticalTableName=>

      println("inside the foreach ... ")
      val verticalTableName2=verticalTableName.dropRight(4)
      val RDFVerticalTableDF = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load(filePathCSV+"/"+verticalTableName).toDF()

      RDFVerticalTableDF.write.format("com.databricks.spark.avro").save(filePathAVRO+"/"+verticalTableName2+".avro")
      RDFVerticalTableDF.write.parquet(filePathParquet+"/"+verticalTableName2+".parquet")
      RDFVerticalTableDF.write.orc(filePathORC+"/"+verticalTableName2+".orc")

      println("Vertical Table: '" +verticalTableName2+"' Has been Successfully Converted to AVRO, PARQUET and ORC !")
    }

  }

}

этот класс преобразует список csv-файлов в директории, заданный в аргументах (0), и сохраняет различные форматы (avro, orc и parquet) в трех каталогахзадано также как args (1) args (2) и args (3).

Я пытался отправить это задание, используя spark-submit в Windows, оно работает, но при запуске того же задания в Ubuntu не удается выполнить сэта ошибка:

ubuntu@ragab:~$ spark-submit --class  RDFBenchVerticalPartionedTables   --master local[*] /home/ubuntu/testjar/rdfschemaconversion_2.11-0.1.jar  "/data/RDFBench4/VerticalPartionnedTables/VerticalPartitionedTables100" "/data/RDFBench3/ConvertedData/SP2Bench100/AVRO/VerticalTables" "/data/RDFBench3/ConvertedData/SP2Bench100/ORC/VerticalTables" "/data/RDFBench3/ConvertedData/SP2Bench100/Parquet"
19/05/04 18:10:06 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Start of programm ....
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Conf and SC declared...
SparkSession declared...
Before Agrs.....
After Agrs.....
After List of Files Agrs.....  25
Before the foreach ...
Exception in thread "main" java.lang.NoSuchMethodError: scala.Predef$.refArrayOps([Ljava/lang/Object;)Lscala/collection/mutable/ArrayOps;
        at RDFBenchVerticalPartionedTables$.main(RDFBenchVerticalPartionedTables.scala:45)
        at RDFBenchVerticalPartionedTables.main(RDFBenchVerticalPartionedTables.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
        at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:849)
        at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:167)
        at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:195)
        at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)
        at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:924)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:933)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

это мой файл sbt:

name := "RDFSchemaConversion"
version := "0.1"
scalaVersion := "2.11.12"

mainClass in (Compile, run) := Some("RDFBenchVerticalPartionedTables")
mainClass in (Compile, packageBin) := Some("RDFBenchVerticalPartionedTables")

libraryDependencies += "org.apache.spark" %% "spark-core" % "2.3.0"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.3.0"

libraryDependencies += "com.typesafe" % "config" % "1.3.1"

libraryDependencies += "com.databricks" %% "spark-avro" % "4.0.0"

1 Ответ

1 голос
/ 05 мая 2019

Ваш дистрибутив Spark в Ubuntu, похоже, скомпилирован с Scala 2.12.Он несовместим с вашим файлом jar, скомпилированным с Scala 2.11.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...