Я расширил результат моего последнего вопроса новой идеей.
Ошибка при запуске приложения R Shiny: операция невозможна без активного реактивного контекста
На этот раз в дополнение к кластеризованным точкам в данных Iris (см. Мой предыдущий вопрос) я хочу показать линию регрессии (на графике), наклон и перехват (на боковой панели) для выбранных точек, как в:
Код регрессии доступен здесь (отдельные файлы server.R и ui.R):
library(shiny)
shinyServer(function(input, output) {
model <- reactive({
brushed_data <- brushedPoints(iris, input$brush1,
xvar = "Petal.Length", yvar = "Petal.Width")
if(nrow(brushed_data) < 2){
return(NULL)
}
lm(Petal.Width ~ Petal.Length, data = brushed_data)
})
output$slopeOut <- renderText({
if(is.null(model())){
"No Model Found"
} else {
model()[[1]][2]
}
})
output$intOut <- renderText({
if(is.null(model())){
"No Model Found"
} else {
model()[[1]][1]
}
})
output$plot1 <- renderPlot({
plot(iris$Petal.Length, iris$Petal.Width, xlab = "Petal.Length",
ylab = "Petal.Width", main = "Iris Dataset",
cex = 1.5, pch = 16, bty = "n")
if(!is.null(model())){
abline(model(), col = "blue", lwd = 2)
}
})
})
и
library(shiny)
shinyUI(fluidPage(
titlePanel("Visualize Many Models"),
sidebarLayout(
sidebarPanel(
h3("Slope"),
textOutput("slopeOut"),
h3("Intercept"),
textOutput("intOut")
),
mainPanel(
plotOutput("plot1", brush = brushOpts(
id = "brush1"
))
)
)
))
Я использовал следующий код. Однако у меня есть проблема с объединением этих двух идей, и сюжет не показан:
![enter image description here](https://i.stack.imgur.com/4hYCC.png)
Вот основной код для этого вопроса (сервер и пользовательский интерфейс в одном файле):
# Loading Libraries and data
library(shiny)
library(caret)
library(ggplot2)
data(iris)
ui <- pageWithSidebar(
# heading 1
headerPanel(h1("Clustering Iris Data")),
sidebarPanel(
sliderInput("k", "Number of clusters:",
min = 1, max = 5, value = 3),
sliderInput("prob", "Training percentage:",
min=0.5, max=0.9, value = 0.7),
# bold text
tags$b("Slope:"),
textOutput("slopeOut"),
# empty line
br(),
# bold text
tags$b("Intercept:"),
textOutput("intOut")
),
# Enabling the submit button disables the hovering feature
# submitButton("submit")),
mainPanel(
# img(src='iris_types.jpg', align = "center", height="50%", width="50%"),
plotOutput("plot1",
click = "plot_click",
brush = brushOpts(id = "brush1")
),
verbatimTextOutput("info")
)
)
#----------------------------------------------------------------------------
server <- function(input, output) {
# the clustering part
get_training_data <- reactive({
inTrain <- createDataPartition(y=iris$Species,
p=input$prob,
list=FALSE)
training <- iris[ inTrain,]
testing <- iris[-inTrain,]
kMeans1 <- kmeans(subset(training,
select=-c(Species)),
centers=input$k)
training$clusters <- as.factor(kMeans1$cluster)
training
})
#-------------------------
# the linear model part
model <- reactive({
brushed_data <- brushedPoints(iris, input$brush1,
xvar = "Petal.Length", yvar = "Petal.Width")
if(nrow(brushed_data) < 2){
return(NULL)
}
lm(Petal.Width ~ Petal.Length, data = brushed_data)
})
# reactive
output$slopeOut <- renderText({
if(is.null(model())){
"No Model Found"
} else {
model()[[1]][2]
}
})
# reactive
output$intOut <- renderText({
if(is.null(model())){
"No Model Found"
} else {
model()[[1]][1]
}
})
#------------------------------------------------
# if (x()<4) 1 else 0
output$plot1 <- reactive({
if(is.null(model())) {
# If no regression model exists, show the regular scatter plot
# with clustered points and hovering feature
renderPlot({
plot(Petal.Width,
Petal.Length,
colour = clusters,
data = get_training_data(),
xlab="Petal Width",
ylab="Petal Length")
})
output$info <- renderPrint({
# With ggplot2, no need to tell it what the x and y variables are.
# threshold: set max distance, in pixels
# maxpoints: maximum number of rows to return
# addDist: add column with distance, in pixels
nearPoints(iris, input$plot_click, threshold = 10, maxpoints = 1,
addDist = FALSE)
})
# closing if
}
else
# If there is a regression model, show the plot with the regression line for the brushed points
renderPlot({
plot(Petal.Width,
Petal.Length,
colour = clusters,
data = get_training_data(),
xlab = "Petal.Length",
ylab = "Petal.Width",
main = "Iris Dataset",
cex = 1.5, pch = 16, bty = "n")
if(!is.null(model())){
abline(model(), col = "blue", lwd = 2)
}
})
# closing reactive statement
})
# curly brace for server function
}
shinyApp(ui, server)