Pyspark рассчитать разницу во времени упорядочено по коду - PullRequest
0 голосов
/ 22 апреля 2019

Я хотел бы знать, возможно ли использование pyspark, если я могу рассчитать разницу во времени набора данных по группам.Например, у меня есть

CODE1 | CODE2  | TIME 
00001 |  AAA   | 2019-01-01 14:00:00
00001 |  AAA   | 2019-01-01 14:05:00
00001 |  AAA   | 2019-01-01 14:10:00
00001 |  BBB   | 2019-01-01 14:15:00
00001 |  BBB   | 2019-01-01 14:20:00
00001 |  AAA   | 2019-01-01 14:25:00
00001 |  AAA   | 2019-01-01 14:30:00

То, что я хотел бы, это что-то вроде

CODE1 | CODE2  | TIME_DIFF
00001 |  AAA   | 10 MINUTES 
00001 |  BBB   | 5 MINUTES
00001 |  AAA   | 5 MINUTES

Разница во времени от последней записи до первой в той же категории.Я уже отсортировал информацию по времени.Возможно ли это?

1 Ответ

0 голосов
/ 22 апреля 2019

Я кодировал это с довольно нормальным и порядочным подходом. Однако нижеприведенное можно оптимизировать, используя больше встроенных функций, доступных в spark.

>>> df.show()
+-----+-----+-------------------+
|CODE1|CODE2|               TIME|
+-----+-----+-------------------+
|    1|  AAA|2019-01-01 14:00:00|
|    1|  AAA|2019-01-01 14:05:00|
|    1|  AAA|2019-01-01 14:10:00|
|    1|  BBB|2019-01-01 14:15:00|
|    1|  BBB|2019-01-01 14:20:00|
|    1|  AAA|2019-01-01 14:25:00|
|    1|  AAA|2019-01-01 14:30:00|
+-----+-----+-------------------+

>>> df.printSchema()
root
 |-- CODE1: long (nullable = true)
 |-- CODE2: string (nullable = true)
 |-- TIME: string (nullable = true)

>>> from pyspark.sql import functions as F, Window
>>> win = Window.partitionBy(F.lit(0)).orderBy('TIME')

#batch_order column is to group CODE2 as per the ordered timestamp
>>> df_1=df.withColumn('prev_batch', F.lag('CODE2').over(win)) \
...   .withColumn('flag', F.when(F.col('CODE2') == F.col('prev_batch'),0).otherwise(1)) \
...   .withColumn('batch_order', F.sum('flag').over(win)) \
...   .drop('prev_batch', 'flag') \
...   .sort('TIME')

>>> df_1.show()
+-----+-----+-------------------+-----------+
|CODE1|CODE2|               TIME|batch_order|
+-----+-----+-------------------+-----------+
|    1|  AAA|2019-01-01 14:00:00|          1|
|    1|  AAA|2019-01-01 14:05:00|          1|
|    1|  AAA|2019-01-01 14:10:00|          1|
|    1|  BBB|2019-01-01 14:15:00|          2|
|    1|  BBB|2019-01-01 14:20:00|          2|
|    1|  AAA|2019-01-01 14:25:00|          3|
|    1|  AAA|2019-01-01 14:30:00|          3|
+-----+-----+-------------------+-----------+

#Extract min and max timestamps for each group
>>> df_max=df_1.groupBy([df_1.batch_order,df_1.CODE2]).agg(F.max("TIME").alias("mx"))
>>> df_min=df_1.groupBy([df_1.batch_order,df_1.CODE2]).agg(F.min("TIME").alias("mn"))
>>> df_max.show()
+-----------+-----+-------------------+
|batch_order|CODE2|                 mx|
+-----------+-----+-------------------+
|          1|  AAA|2019-01-01 14:10:00|
|          2|  BBB|2019-01-01 14:20:00|
|          3|  AAA|2019-01-01 14:30:00|
+-----------+-----+-------------------+

>>> df_min.show()
+-----------+-----+-------------------+
|batch_order|CODE2|                 mn|
+-----------+-----+-------------------+
|          1|  AAA|2019-01-01 14:00:00|
|          2|  BBB|2019-01-01 14:15:00|
|          3|  AAA|2019-01-01 14:25:00|
+-----------+-----+-------------------+

#join on batch_order
>>> df_joined=df_max.join(df_min,df_max.batch_order==df_min.batch_order)
>>> df_joined.show()
+-----------+-----+-------------------+-----------+-----+-------------------+
|batch_order|CODE2|                 mx|batch_order|CODE2|                 mn|
+-----------+-----+-------------------+-----------+-----+-------------------+
|          1|  AAA|2019-01-01 14:10:00|          1|  AAA|2019-01-01 14:00:00|
|          3|  AAA|2019-01-01 14:30:00|          3|  AAA|2019-01-01 14:25:00|
|          2|  BBB|2019-01-01 14:20:00|          2|  BBB|2019-01-01 14:15:00|
+-----------+-----+-------------------+-----------+-----+-------------------+


>>> from pyspark.sql.functions import unix_timestamp
>>> from pyspark.sql.types import IntegerType
#difference between the max and min timestamp
>>> df_joined.withColumn("diff",((unix_timestamp(df_joined.mx, 'yyyy-MM-dd HH:mm:ss')-unix_timestamp(df_joined.mn, 'yyyy-MM-dd HH:mm:ss'))/60).cast(IntegerType())).show()
+-----------+-----+-------------------+-------------------+----+
|batch_order|CODE2|                 mx|                 mn|diff|
+-----------+-----+-------------------+-------------------+----+
|          1|  AAA|2019-01-01 14:10:00|2019-01-01 14:00:00|  10|
|          3|  AAA|2019-01-01 14:30:00|2019-01-01 14:25:00|   5|
|          2|  BBB|2019-01-01 14:20:00|2019-01-01 14:15:00|   5|
+-----------+-----+-------------------+-------------------+----+
...