Как сделать линейную регрессию для каждых трех строк в Python? - PullRequest
0 голосов
/ 31 мая 2019

Я хочу сделать линейную регрессию для каждых трех строк, используя цикл for и count, но я не смог сделать это, потому что меня перепутали с вводом (x & y) для линейной регрессии.

Вот это код:

from sklearn.metrics import mean_squared_error, r2_score
import statsmodels.api as sm
import numpy as np

year=data_['Year']
value=data_['Value']
count=0
for a,b in zip(year,value):
    print(a,b) 
    count = count+1[input][1]
    window_type='rolling'

    if count%3 == 0 :
        x=data_.loc[0:3,['Year']]
        y=data_.loc[0:3,['Value']]

        reg=linear_model.LinearRegression()
        x_train,x_test,y_train,y_test=train_test_split(x,y,test_size = 0.2 ,random_state=3)
        reg.fit(x,y)

        y4=4*reg.coef_ + reg.intercept_

        print("Equation : 4 *", reg.coef_, "+", reg.intercept_)
        print("Y4 : ", y4)
        print("====")

Фактический результат:

1 6.262008
2 5.795994
3 5.082562
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 :  [[-96.96783982]]
====
1 285.433511
2 260.43560099999996
3 238.71312400000002
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 :  [[-96.96783982]]
====
1 2.595145
2 2.508278
3 2.67997
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 :  [[-96.96783982]]
====

Вывод, который я хочу получить: каждые три строки приводят к разным Y4

Пожалуйста, помогите мне решить эту проблему.

1 Ответ

0 голосов
/ 31 мая 2019

Если я правильно понимаю ваш вопрос, вы можете сначала обратиться к официальному документу 'sklearn.linear_model.LinearRegression.fit'
Убедитесь, что ваш ввод reg.fit(X, y) имеет тип numpy.ndarray. Чтобы быть понятным, в вашем случае,

X = np.array([1, 2, 3]).reshape(3,1)
y = np.array([6.262008, 5.795994, 5.082562])
reg=linear_model.LinearRegression()
reg.fit(X,y)
y4=4*reg.coef_ + reg.intercept_
print(np.squeeze(y4))

Это должно вернуться,

+4,534075333333335

...