Я пытаюсь изучить CNN с моими собственными данными.Форма данных (1224, 15, 23)
.1224 - это номер данных, и каждый из них равен (15, 23)
.CNN построен с PyTorch.
Я думаю, что нет логической ошибки, потому что conv2D нужен 4-D тензор, и я передаю (batch, channel, x, y)
.
, когда я собираю экземпляр класса Net Iполучил эту ошибку.
TypeError: argument 0 is not a Variable
Я использую PyTroch в течение полугода, но эта ошибка в первый раз, и я все еще в замешательстве.
Вот мой код.
class Net(nn.Module):
def __init__(self, n):
super(Net,self).__init__()
self.conv = nn.Sequential(nn.Conv2d(1, 32, kernel_size=3, stride=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1), # 64 x 9 x 17
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.fc = nn.Sequential(nn.Linear(64 * 9 * 17, 128),
nn.ReLU(),
nn.Linear(128, n)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
return sefl.fc(conv_out)
if __name__=='__main__':
num_epochs = 1
num_classes = 2
input_shape = train_img[0].shape # 1, 15, 23
net = Net(num_classes)
iteration = 51
BATCH_SIZE = 24
LEARNING_RATE = 0.0001
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
loss_list= []
batch_index = 0
# train
for epoch in range(num_epochs):
for i in range(iteration):
input_img = torch.FloatTensor(train_img[batch_index: batch_index + BATCH_SIZE])
print(input_img.size()) # 24, 1, 15, 23
outputs = net(input_img)
loss = criterion(outputs, labels)
loss_list.append(loss.item())
# Backprop
opimizer.zero_grad()
loss.backward()
optimizer.step()
И сообщение об ошибке:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-179-0f6bc7588c29> in <module>
4 input_shape = train_img[0].shape # 1, 15, 23
5
----> 6 net = Net(num_classes)
7 iteration = 51
8 BATCH_SIZE = 24
<ipython-input-178-8a68d4a0dc4a> in __init__(self, n)
11 )
12
---> 13 conv_out_size = self._get_conv_out(input_shape)
14 self.fc = nn.Sequential(nn.Linear(64 * 9 * 17, 128),
15 nn.ReLU(),
<ipython-input-178-8a68d4a0dc4a> in _get_conv_out(self, shape)
18
19 def _get_conv_out(self, shape):
---> 20 o = self.conv(torch.zeros(1, *shape))
21 return int(np.prod(o.size()))
22
C:\DTools\Anaconda3\envs\tensorflow\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
355 result = self._slow_forward(*input, **kwargs)
356 else:
--> 357 result = self.forward(*input, **kwargs)
358 for hook in self._forward_hooks.values():
359 hook_result = hook(self, input, result)
C:\DTools\Anaconda3\envs\tensorflow\lib\site-packages\torch\nn\modules\container.py in forward(self, input)
65 def forward(self, input):
66 for module in self._modules.values():
---> 67 input = module(input)
68 return input
69
C:\DTools\Anaconda3\envs\tensorflow\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
355 result = self._slow_forward(*input, **kwargs)
356 else:
--> 357 result = self.forward(*input, **kwargs)
358 for hook in self._forward_hooks.values():
359 hook_result = hook(self, input, result)
C:\DTools\Anaconda3\envs\tensorflow\lib\site-packages\torch\nn\modules\conv.py in forward(self, input)
280 def forward(self, input):
281 return F.conv2d(input, self.weight, self.bias, self.stride,
--> 282 self.padding, self.dilation, self.groups)
283
284
C:\DTools\Anaconda3\envs\tensorflow\lib\site-packages\torch\nn\functional.py in conv2d(input, weight, bias, stride, padding, dilation, groups)
88 _pair(0), groups, torch.backends.cudnn.benchmark,
89 torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
---> 90 return f(input, weight, bias)
91
92
TypeError: argument 0 is not a Variable