float
не более точен, чем double
, и ваши вычисления float
не дали вам точного результата pow(4,-59)/3
.
Что происходит, так это то, что ваше повторение рассчитано намаленькая ошибка округления и усиливать ее каждую итерацию.В точной математике, каждое значение должно составлять ровно одну четверть предыдущего значения, но если это не совсем четверть из-за ошибки округления, разница увеличивается на каждом шаге.
Поскольку четверть представимого значениявсегда представимый (до тех пор, пока вы не столкнетесь с ненормальными числами и проблемами с занижением), у повторения есть дополнительное свойство: если вычисления выполняются с точностью, достаточно превышающей точность, с которой сохраняются результаты, затем округляют результаты до более низкой точности для хранениябудет округлять ровно до четверти предыдущего значения.(Выбор коэффициентов 9./4
и 1./2
дает рекуррентности еще более сильную версию этого свойства, где результат составляет ровно четверть старого значения даже до округления для хранения.)
При двойных значениях, с используемыми настройками компилятора и компилятора, ошибка округления возникает и усиливается.В случае с плавающей точкой вычисления выполняются с двойной точностью, что исключает ошибку округления на этапах повторения благодаря описанным выше свойствам, поэтому нечего усиливать.Если бы вычисление для удвоений было выполнено с длинной двойной точностью, произошло бы то же самое.
Давайте внимательнее посмотрим на полученные точные значения, используя спецификатор формата %a
для печатичисла с плавающей точкой в шестнадцатеричном обозначении.Это похоже на 0x1.5555555555558p-6
, где часть между 0x
и p
является шестнадцатеричным числом, а часть после p
является десятичным числом, представляющим степень двойки, на которую умножается шестнадцатеричное число.Здесь 0x1.5555555555558p-6
представляет 0x1,5555555555558 раз 2 ^ -6.Формат %a
всегда печатает точное значение типа float или double, в отличие от округления %g
.
Мы также покажем третье вычисление, сохраняя результаты как double, но выполняя математические операции для long doubleточность.
Наша измененная программа выглядит следующим образом:
#include <stdio.h>
#include <math.h>
int main(void)
{
float x[60];
x[0] = 1./3;
x[1] = 1./12;
for (int i = 2; i < 60; i++) {
x[i] = 9./4*x[i-1]-1./2*x[i-2];
}
double y[60];
y[0] = 1./3;
y[1] = 1./12;
for (int i = 2; i < 60; i++) {
y[i] = 9./4*y[i-1]-1./2*y[i-2];
}
double z[60];
z[0] = 1./3;
z[1] = 1./12;
for (int i = 2; i < 60; i++) {
z[i] = (long double) 9./4*z[i-1] - (long double) 1./2*z[i-2];
}
printf("float:%a, double:%a, double2:%a, formula:%a\n", x[59], y[59], z[59], pow(4,-59)/3);
for (int i = 0; i < 60; i++) {
printf("%d %a %a %a\n", i, x[i], y[i], z[i]);
}
return 0;
}
А вот и результат.Я собирался сократить это, но оказалось, что это трудно сделать, не затеняя интересные части шаблона:
float:0x1.555556p-120, double:0x1.b6db6db6db6dap+0, double2:0x1.5555555555555p-120, formula:0x1.5555555555555p-120
0 0x1.555556p-2 0x1.5555555555555p-2 0x1.5555555555555p-2
1 0x1.555556p-4 0x1.5555555555555p-4 0x1.5555555555555p-4
2 0x1.555556p-6 0x1.5555555555558p-6 0x1.5555555555555p-6
3 0x1.555556p-8 0x1.555555555557p-8 0x1.5555555555555p-8
4 0x1.555556p-10 0x1.555555555563p-10 0x1.5555555555555p-10
5 0x1.555556p-12 0x1.5555555555c3p-12 0x1.5555555555555p-12
6 0x1.555556p-14 0x1.5555555558c3p-14 0x1.5555555555555p-14
7 0x1.555556p-16 0x1.5555555570c3p-16 0x1.5555555555555p-16
8 0x1.555556p-18 0x1.5555555630c3p-18 0x1.5555555555555p-18
9 0x1.555556p-20 0x1.5555555c30c3p-20 0x1.5555555555555p-20
10 0x1.555556p-22 0x1.5555558c30c3p-22 0x1.5555555555555p-22
11 0x1.555556p-24 0x1.5555570c30c3p-24 0x1.5555555555555p-24
12 0x1.555556p-26 0x1.5555630c30c3p-26 0x1.5555555555555p-26
13 0x1.555556p-28 0x1.5555c30c30c3p-28 0x1.5555555555555p-28
14 0x1.555556p-30 0x1.5558c30c30c3p-30 0x1.5555555555555p-30
15 0x1.555556p-32 0x1.5570c30c30c3p-32 0x1.5555555555555p-32
16 0x1.555556p-34 0x1.5630c30c30c3p-34 0x1.5555555555555p-34
17 0x1.555556p-36 0x1.5c30c30c30c3p-36 0x1.5555555555555p-36
18 0x1.555556p-38 0x1.8c30c30c30c3p-38 0x1.5555555555555p-38
19 0x1.555556p-40 0x1.8618618618618p-39 0x1.5555555555555p-40
20 0x1.555556p-42 0x1.e186186186186p-39 0x1.5555555555555p-42
21 0x1.555556p-44 0x1.bc30c30c30c3p-38 0x1.5555555555555p-44
22 0x1.555556p-46 0x1.b786186186185p-37 0x1.5555555555555p-46
23 0x1.555556p-48 0x1.b6f0c30c30c3p-36 0x1.5555555555555p-48
24 0x1.555556p-50 0x1.b6de186186185p-35 0x1.5555555555555p-50
25 0x1.555556p-52 0x1.b6dbc30c30c3p-34 0x1.5555555555555p-52
26 0x1.555556p-54 0x1.b6db786186185p-33 0x1.5555555555555p-54
27 0x1.555556p-56 0x1.b6db6f0c30c3p-32 0x1.5555555555555p-56
28 0x1.555556p-58 0x1.b6db6de186185p-31 0x1.5555555555555p-58
29 0x1.555556p-60 0x1.b6db6dbc30c3p-30 0x1.5555555555555p-60
30 0x1.555556p-62 0x1.b6db6db786185p-29 0x1.5555555555555p-62
31 0x1.555556p-64 0x1.b6db6db6f0c3p-28 0x1.5555555555555p-64
32 0x1.555556p-66 0x1.b6db6db6de185p-27 0x1.5555555555555p-66
33 0x1.555556p-68 0x1.b6db6db6dbc3p-26 0x1.5555555555555p-68
34 0x1.555556p-70 0x1.b6db6db6db785p-25 0x1.5555555555555p-70
35 0x1.555556p-72 0x1.b6db6db6db6fp-24 0x1.5555555555555p-72
36 0x1.555556p-74 0x1.b6db6db6db6ddp-23 0x1.5555555555555p-74
37 0x1.555556p-76 0x1.b6db6db6db6dbp-22 0x1.5555555555555p-76
38 0x1.555556p-78 0x1.b6db6db6db6dap-21 0x1.5555555555555p-78
39 0x1.555556p-80 0x1.b6db6db6db6dap-20 0x1.5555555555555p-80
40 0x1.555556p-82 0x1.b6db6db6db6dap-19 0x1.5555555555555p-82
41 0x1.555556p-84 0x1.b6db6db6db6dap-18 0x1.5555555555555p-84
42 0x1.555556p-86 0x1.b6db6db6db6dap-17 0x1.5555555555555p-86
43 0x1.555556p-88 0x1.b6db6db6db6dap-16 0x1.5555555555555p-88
44 0x1.555556p-90 0x1.b6db6db6db6dap-15 0x1.5555555555555p-90
45 0x1.555556p-92 0x1.b6db6db6db6dap-14 0x1.5555555555555p-92
46 0x1.555556p-94 0x1.b6db6db6db6dap-13 0x1.5555555555555p-94
47 0x1.555556p-96 0x1.b6db6db6db6dap-12 0x1.5555555555555p-96
48 0x1.555556p-98 0x1.b6db6db6db6dap-11 0x1.5555555555555p-98
49 0x1.555556p-100 0x1.b6db6db6db6dap-10 0x1.5555555555555p-100
50 0x1.555556p-102 0x1.b6db6db6db6dap-9 0x1.5555555555555p-102
51 0x1.555556p-104 0x1.b6db6db6db6dap-8 0x1.5555555555555p-104
52 0x1.555556p-106 0x1.b6db6db6db6dap-7 0x1.5555555555555p-106
53 0x1.555556p-108 0x1.b6db6db6db6dap-6 0x1.5555555555555p-108
54 0x1.555556p-110 0x1.b6db6db6db6dap-5 0x1.5555555555555p-110
55 0x1.555556p-112 0x1.b6db6db6db6dap-4 0x1.5555555555555p-112
56 0x1.555556p-114 0x1.b6db6db6db6dap-3 0x1.5555555555555p-114
57 0x1.555556p-116 0x1.b6db6db6db6dap-2 0x1.5555555555555p-116
58 0x1.555556p-118 0x1.b6db6db6db6dap-1 0x1.5555555555555p-118
59 0x1.555556p-120 0x1.b6db6db6db6dap+0 0x1.5555555555555p-120
Здесь мы сначала видим, что вычисление float
не дает точногозначение, которое дала формула pow
(для этого не хватает точности), но оно было достаточно близко, чтобы разница была скрыта округлением %g
.Мы также видим, что значения float
уменьшаются на точно в 4 раза, как и значения из измененного вычисления double
.Значения double
из исходной версии double
начинаются с почти , а затем расходятся, когда усиленная ошибка выходит за рамки вычислений.В конечном итоге значения начинают увеличиваться в 2 раза, а не в 4 раза.