Я пытаюсь построить модель для распознавания активности.
Использование InceptionV3 и магистрали и LSTM для обнаружения с использованием предварительно обученных весов.
train_generator = datagen.flow_from_directory(
'dataset/train',
target_size=(1,224, 224),
batch_size=batch_size,
class_mode='categorical', # this means our generator will only yield batches of data, no labels
shuffle=True,
classes=['PlayingPiano','HorseRiding','Skiing', 'Basketball','BaseballPitch'])
validation_generator = datagen.flow_from_directory(
'dataset/validate',
target_size=(1,224, 224),
batch_size=batch_size,
class_mode='categorical', # this means our generator will only yield batches of data, no labels
shuffle=True,
classes=['PlayingPiano','HorseRiding','Skiing', 'Basketball','BaseballPitch'])
return train_generator,validation_generator
Я тренирую 5 классов, поэтому разбиваю свои данные на папки для обучения и проверки.
Это моя архитектура CNN + LSTM
image = Input(shape=(None,224,224,3),name='image_input')
cnn = applications.inception_v3.InceptionV3(
weights='imagenet',
include_top=False,
pooling='avg')
cnn.trainable = False
encoded_frame = TimeDistributed(Lambda(lambda x: cnn(x)))(image)
encoded_vid = LSTM(256)(encoded_frame)
layer1 = Dense(512, activation='relu')(encoded_vid)
dropout1 = Dropout(0.5)(layer1)
layer2 = Dense(256, activation='relu')(dropout1)
dropout2 = Dropout(0.5)(layer2)
layer3 = Dense(64, activation='relu')(dropout2)
dropout3 = Dropout(0.5)(layer3)
outputs = Dense(5, activation='softmax')(dropout3)
model = Model(inputs=[image],outputs=outputs)
sgd = SGD(lr=0.001, decay = 1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(train_generator,validation_data = validation_generator,steps_per_epoch=300, epochs=nb_epoch,callbacks=callbacks,shuffle=True,verbose=1)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
image_input (InputLayer) (None, None, 224, 224, 3) 0
_________________________________________________________________
time_distributed_1 (TimeDist (None, None, 2048) 0
_________________________________________________________________
lstm_1 (LSTM) (None, 256) 2360320
_________________________________________________________________
dense_1 (Dense) (None, 512) 131584
_________________________________________________________________
dropout_1 (Dropout) (None, 512) 0
_________________________________________________________________
dense_2 (Dense) (None, 256) 131328
_________________________________________________________________
dropout_2 (Dropout) (None, 256) 0
_________________________________________________________________
dense_3 (Dense) (None, 64) 16448
_________________________________________________________________
dropout_3 (Dropout) (None, 64) 0
_________________________________________________________________
dense_4 (Dense) (None, 5) 325
_________________________________________________________________
Модель компилируется нормально без проблем.
Проблема начинается во время обучения. Он достигает val_acc = 0.50, а затем возвращается к val_acc = 0.30, а потери просто замирают на 0.80 и в основном не двигаются.
Здесь журналы тренировок, как вы видите, модель для некоторых томов улучшается, а затем просто медленно падает вниз, а затем просто останавливается.
Есть идеи, в чем может быть причина?
Epoch 00002: val_loss improved from 1.56471 to 1.55652, saving model to ./weights_inception/Inception_V3.02-0.28.h5
Epoch 3/500
300/300 [==============================] - 66s 219ms/step - loss: 1.5436 - acc: 0.3281 - val_loss: 1.5476 - val_acc: 0.2981
Epoch 00003: val_loss improved from 1.55652 to 1.54757, saving model to ./weights_inception/Inception_V3.03-0.30.h5
Epoch 4/500
300/300 [==============================] - 66s 220ms/step - loss: 1.5109 - acc: 0.3593 - val_loss: 1.5284 - val_acc: 0.3588
Epoch 00004: val_loss improved from 1.54757 to 1.52841, saving model to ./weights_inception/Inception_V3.04-0.36.h5
Epoch 5/500
300/300 [==============================] - 66s 221ms/step - loss: 1.4167 - acc: 0.4167 - val_loss: 1.4945 - val_acc: 0.3553
Epoch 00005: val_loss improved from 1.52841 to 1.49446, saving model to ./weights_inception/Inception_V3.05-0.36.h5
Epoch 6/500
300/300 [==============================] - 66s 221ms/step - loss: 1.2941 - acc: 0.4683 - val_loss: 1.4735 - val_acc: 0.4443
Epoch 00006: val_loss improved from 1.49446 to 1.47345, saving model to ./weights_inception/Inception_V3.06-0.44.h5
Epoch 7/500
300/300 [==============================] - 66s 221ms/step - loss: 1.2096 - acc: 0.5116 - val_loss: 1.3738 - val_acc: 0.5186
Epoch 00007: val_loss improved from 1.47345 to 1.37381, saving model to ./weights_inception/Inception_V3.07-0.52.h5
Epoch 8/500
300/300 [==============================] - 66s 221ms/step - loss: 1.1477 - acc: 0.5487 - val_loss: 1.2337 - val_acc: 0.5788
Epoch 00008: val_loss improved from 1.37381 to 1.23367, saving model to ./weights_inception/Inception_V3.08-0.58.h5
Epoch 9/500
300/300 [==============================] - 66s 221ms/step - loss: 1.0809 - acc: 0.5831 - val_loss: 1.2247 - val_acc: 0.5658
Epoch 00009: val_loss improved from 1.23367 to 1.22473, saving model to ./weights_inception/Inception_V3.09-0.57.h5
Epoch 10/500
300/300 [==============================] - 66s 221ms/step - loss: 1.0362 - acc: 0.6089 - val_loss: 1.1704 - val_acc: 0.5774
Epoch 00010: val_loss improved from 1.22473 to 1.17035, saving model to ./weights_inception/Inception_V3.10-0.58.h5
Epoch 11/500
300/300 [==============================] - 66s 221ms/step - loss: 0.9811 - acc: 0.6317 - val_loss: 1.1612 - val_acc: 0.5616
Epoch 00011: val_loss improved from 1.17035 to 1.16121, saving model to ./weights_inception/Inception_V3.11-0.56.h5
Epoch 12/500
300/300 [==============================] - 66s 221ms/step - loss: 0.9444 - acc: 0.6471 - val_loss: 1.1533 - val_acc: 0.5613
Epoch 00012: val_loss improved from 1.16121 to 1.15330, saving model to ./weights_inception/Inception_V3.12-0.56.h5
Epoch 13/500
300/300 [==============================] - 66s 221ms/step - loss: 0.9072 - acc: 0.6650 - val_loss: 1.1843 - val_acc: 0.5361
Epoch 00013: val_loss did not improve from 1.15330
Epoch 14/500
300/300 [==============================] - 66s 221ms/step - loss: 0.8747 - acc: 0.6744 - val_loss: 1.2135 - val_acc: 0.5258
Epoch 00014: val_loss did not improve from 1.15330
Epoch 15/500
300/300 [==============================] - 67s 222ms/step - loss: 0.8666 - acc: 0.6829 - val_loss: 1.1585 - val_acc: 0.5443
Epoch 00015: val_loss did not improve from 1.15330
Epoch 16/500
300/300 [==============================] - 66s 222ms/step - loss: 0.8386 - acc: 0.6926 - val_loss: 1.1503 - val_acc: 0.5482
Epoch 00016: val_loss improved from 1.15330 to 1.15026, saving model to ./weights_inception/Inception_V3.16-0.55.h5
Epoch 17/500
300/300 [==============================] - 66s 221ms/step - loss: 0.8199 - acc: 0.7023 - val_loss: 1.2162 - val_acc: 0.5288
Epoch 00017: val_loss did not improve from 1.15026
Epoch 18/500
300/300 [==============================] - 66s 222ms/step - loss: 0.8018 - acc: 0.7150 - val_loss: 1.1995 - val_acc: 0.5179
Epoch 00018: val_loss did not improve from 1.15026
Epoch 19/500
300/300 [==============================] - 66s 221ms/step - loss: 0.7923 - acc: 0.7186 - val_loss: 1.2218 - val_acc: 0.5137
Epoch 00019: val_loss did not improve from 1.15026
Epoch 20/500
300/300 [==============================] - 67s 222ms/step - loss: 0.7748 - acc: 0.7268 - val_loss: 1.2880 - val_acc: 0.4574
Epoch 00020: val_loss did not improve from 1.15026
Epoch 21/500
300/300 [==============================] - 66s 221ms/step - loss: 0.7604 - acc: 0.7330 - val_loss: 1.2658 - val_acc: 0.4861