Я пытаюсь создать конвейер sklearn, который сначала извлекает среднюю длину слова в тексте, а затем стандартизирует ее, используя StandardScaler
.
настраиваемый преобразователь
class AverageWordLengthExtractor(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def average_word_length(self, text):
return np.mean([len(word) for word in text.split( )])
def fit(self, x, y=None):
return self
def transform(self, x , y=None):
return pd.DataFrame(pd.Series(x).apply(self.average_word_length))
Myцель состоит в том, чтобы достигнуть этого.X - серия панд с текстовыми значениями.Это работает.
extractor=AverageWordLengthExtractor()
print(extractor.transform(X[:10]))
sc=StandardScaler()
print(sc.fit_transform(extractor.transform(X[:10])))
Для этого я создал конвейер.
pipeline = Pipeline([('text_length', AverageWordLengthExtractor(), 'scale', StandardScaler())])
Но pipeline.fit_transform()
выдает ошибку ниже.
Traceback (most recent call last):
File "custom_transformer.py", line 48, in <module>
main()
File "custom_transformer.py", line 43, in main
'scale', StandardScaler())])
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 114, in __init__
self._validate_steps()
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 146, in _validate_steps
names, estimators = zip(*self.steps)
ValueError: too many values to unpack (expected 2)