Я пытаюсь код относится к этой статье:
https://www.linkedin.com/pulse/hacking-elasticsearch-image-retrieval-ashwin-saval
Как упомянуто в статье
ПРИМЕЧАНИЕ: хотя мы храним изображениеФункции как простые массивы в Elasticsearch, нам нужно было бы квантовать функции изображений, если бы мы также хранили их как векторы терминов.Так как значения терминов могут быть только положительными целыми числами.
pip install numpy scipy scikit-learn face_recognition opencv-python
python face-quanization.py test.jpg
import os
import sys
import cv2
import face_recognition
import numpy as np
from sklearn.preprocessing import normalize
def get_median_values_for_bins(bins):
median_values = {}
for binidx in range(1, bins.shape[0]):
binval = bins[binidx]
binval_prev = bins[binidx - 1]
median_values[binidx] = binval_prev
median_values[bins.shape[0]] = bins[bins.shape[0]-1]
return median_values
def get_quantized_features(features, quantization_factor=30):
normalized_features = normalize(features, axis=1)
offset = np.abs(np.min(normalized_features))
offset_features = normalized_features + offset # Making all feature values positive
# Let's proceed to quantize these positive feature values
min_val = np.min(offset_features)
max_val = np.max(offset_features)
bins = np.linspace(start=min_val, stop=max_val, num=quantization_factor)
median_values = get_median_values_for_bins(bins)
original_quantized_features = np.digitize(offset_features, bins)
quantized_features = np.apply_along_axis(lambda row: map(lambda x: median_values[x], row), 1, original_quantized_features)
quantized_features = np.floor(quantization_factor*quantized_features)
return quantized_features
if len(sys.argv) < 2:
print("Usage: face-encode <image>")
exit(1)
# Take the image file name from the command line
file_name = sys.argv[1]
# Load the image
image = cv2.imread(file_name)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input img
boxes = face_recognition.face_locations(rgb)
# compute the facial embedding for the face
encodings = face_recognition.face_encodings(rgb, boxes)
quantization_factor = 5000 # Adjust this depending on accuracy of quantized features.
for idx,encoding in enumerate(encodings):
quantized_features = get_quantized_features(encoding.reshape(-1, 1), quantization_factor)
Я получил эту ошибку
Traceback (most recent call last):
File "face-quantization.py", line 58, in <module>
quantized_features = get_quantized_features(encoding.reshape(-1, 1), quantization_factor)
File "face-quantization.py", line 33, in get_quantized_features
quantized_features = np.floor(quantization_factor*quantized_features)
TypeError: unsupported operand type(s) for *: 'int' and 'map'
Любая помощь будет оценена
Спасибо