Различные алгоритмы обнаружения цикла в ориентированном графе предназначены для произвольных ориентированных графов.График, изображенный здесь, намного проще в том смысле, что у каждого ребенка не более родителя.Это позволяет легко определить, присутствует ли цикл, что можно сделать очень быстро.
Я интерпретировал этот вопрос как означающий, что, если цикл присутствует, вы хотите вернуть один, а не просто определениеприсутствует ли один.
Код
require 'set'
def cycle_present?(arr)
kids_to_parent = arr.each_with_object({}) { |g,h| h[g[:id]] = g[:pid] }
kids = kids_to_parent.keys
while kids.any?
kid = kids.first
visited = [kid].to_set
loop do
parent = kids_to_parent[kid]
break if parent.nil? || !kids.include?(parent)
return construct_cycle(parent, kids_to_parent) unless visited.add?(parent)
kid = parent
end
kids -= visited.to_a
end
false
end
def construct_cycle(parent, kids_to_parent)
arr = [parent]
loop do
parent = kids_to_parent[parent]
arr << parent
break arr if arr.first == parent
end
end
Примеры
cycle_present?(jobs)
#=> [2, 3, 6, 2]
arr = [{:id=>1, :title=>"a", :pid=>nil},
{:id=>2, :title=>"b", :pid=>1},
{:id=>3, :title=>"c", :pid=>1},
{:id=>4, :title=>"d", :pid=>2},
{:id=>5, :title=>"e", :pid=>2},
{:id=>6, :title=>"f", :pid=>3}]
cycle_present?(arr)
#=> false
Пояснение
Вот метод с комментариями и puts
утверждениями.
def cycle_present?(arr)
kids_to_parent = arr.each_with_object({}) { |g,h| h[g[:id]] = g[:pid] }
puts "kids_to_parent = #{kids_to_parent}" #!!
# kids are nodes that may be on a cycle
kids = kids_to_parent.keys
puts "kids = #{kids}" #!!
while kids.any?
# select a kid
kid = kids.first
puts "\nkid = #{kid}" #!!
# construct a set initially containing kid
visited = [kid].to_set
puts "visited = #{visited}" #!!
puts "enter loop do" #!!
loop do
# determine kid's parent, if has one
parent = kids_to_parent[kid]
puts " parent = #{parent}" #!!
if parent.nil? #!!
puts " parent.nil? = true, so break" #!!
elsif !kids.include?(parent)
puts " kids.include?(parent) #=> false, parent has been excluded" #!!
end #!!
# if the kid has no parent or the parent has already been removed
# from kids we can break and eliminate all kids in visited
break if parent.nil? || !kids.include?(parent)
# try to add parent to set of visited nodes; if can't we have
# discovered a cycle and are finished
puts " visited.add?(parent) = #{!visited.include?(parent)}" #!!
puts " return construct_cycle(parent, kids_to_parent)" if
visited.include?(parent) #!!
return construct_cycle(parent, kids_to_parent) unless visited.add?(parent)
puts " now visited = #{visited}" #!!
# the new kid is the parent of the former kid
puts " set kid = #{parent}" #!!
kid = parent
end
# we found a kid with no parent, or a parent who has already
# been removed from kids, so remove all visited nodes
puts "after loop, set kids = #{kids - visited.to_a}" #!!
kids -= visited.to_a
end
puts "after while loop, return false" #!!
false
end
def construct_cycle(parent, kids_to_parent)
puts
arr = [parent]
loop do
parent = kids_to_parent[parent]
puts "arr = #{arr}, parent = #{parent} #!!
arr << parent
break arr if arr.first == parent
end
end
cycle_present?(jobs)
отображает следующее:
kid = 1
visited = #<Set: {1}>
enter loop do
parent =
parent.nil? = true, so break
after loop, set kids = [2, 3, 4, 5, 6]
kid = 2
visited = #<Set: {2}>
enter loop do
parent = 3
visited.add?(parent) = true
now visited = #<Set: {2, 3}>
set kid = 3
parent = 6
visited.add?(parent) = true
now visited = #<Set: {2, 3, 6}>
set kid = 6
parent = 2
visited.add?(parent) = false
return construct_cycle(parent, kids_to_parent)
arr=[2], parent = 3
arr=[2, 3], parent = 6
arr=[2, 3, 6], parent = 2
#=> [2, 3, 6, 2]