Один из подходов заключается в псевдониме агрегированных столбцов для исходных имен столбцов в последующем select
. Я бы также предложил обобщить одну агрегатную функцию (т.е. first
) на список функций, как показано ниже:
import org.apache.spark.sql.functions._
val df = Seq(
(1, 10, "a1", "a2", "a3"),
(1, 10, "b1", "b2", "b3"),
(2, 20, "c1", "c2", "c3"),
(2, 30, "d1", "d2", "d3"),
(2, 30, "e1", "e2", "e3")
).toDF("gc1", "gc2", "val1", "val2", "val3")
val gmList = List("gc1", "gc2")
val aList = List("val1", "val2", "val3")
// Populate with different aggregate methods for individual columns if necessary
val fList = List.fill(aList.size)("first")
val afPairs = aList.zip(fList)
// afPairs: List[(String, String)] = List((val1,first), (val2,first), (val3,first))
df.
groupBy(gmList.map(col): _*).agg(afPairs.toMap).
select(gmList.map(col) ::: afPairs.map{ case (v, f) => col(s"$f($v)").as(v) }: _*).
show
// +---+---+----+----+----+
// |gc1|gc2|val1|val2|val3|
// +---+---+----+----+----+
// | 2| 20| c1| c2| c3|
// | 1| 10| a1| a2| a3|
// | 2| 30| d1| d2| d3|
// +---+---+----+----+----+