Библиотека numpy_indexed
:
Я знаю, что это технически не numpy
, но библиотека numpy_indexed
имеет векторизованную функцию group_by
, которая идеально подходит для этого, просто хотела поделиться какя часто использую альтернативу:
>>> import numpy_indexed as npi
>>> npi.group_by(bins).argmax(vals)
(array([0, 1, 2]), array([0, 3, 9], dtype=int64))
Использование простых pandas
groupby
и idxmax
:
df = pd.DataFrame({'bins': bins, 'vals': vals})
df.groupby('bins').vals.idxmax()
Использование sparse.csr_matrix
Эта опция очень быстрая на очень больших входах.
sparse.csr_matrix(
(vals, bins, np.arange(vals.shape[0]+1)), (vals.shape[0], k)
).argmax(0)
# matrix([[0, 3, 9]])
Производительность
Функции
def chris(bins, vals, k):
return npi.group_by(bins).argmax(vals)
def chris2(df):
return df.groupby('bins').vals.idxmax()
def chris3(bins, vals, k):
sparse.csr_matrix((vals, bins, np.arange(vals.shape[0] + 1)), (vals.shape[0], k)).argmax(0)
def divakar(bins, vals, k):
mx = vals.max()+1
sidx = bins.argsort()
sb = bins[sidx]
sm = np.r_[sb[:-1] != sb[1:],True]
argmax_out = np.argsort(bins*mx + vals)[sm]
max_out = vals[argmax_out]
return max_out, argmax_out
def divakar2(bins, vals, k):
last_idx = np.bincount(bins).cumsum()-1
scaled_vals = bins*(vals.max()+1) + vals
argmax_out = np.argsort(scaled_vals)[last_idx]
max_out = vals[argmax_out]
return max_out, argmax_out
def user545424(bins, vals, k):
return np.argmax(vals*(bins == np.arange(bins.max()+1)[:,np.newaxis]),axis=-1)
def user2699(bins, vals, k):
res = []
for v in np.unique(bins):
idx = (bins==v)
r = np.where(idx)[0][np.argmax(vals[idx])]
res.append(r)
return np.array(res)
def sacul(bins, vals, k):
return np.lexsort((vals, bins))[np.append(np.diff(np.sort(bins)), 1).astype(bool)]
@njit
def piRSquared(bins, vals, k):
out = -np.ones(k, np.int64)
trk = np.empty(k, vals.dtype)
trk.fill(np.nanmin(vals))
for i in range(len(bins)):
v = vals[i]
b = bins[i]
if v > trk[b]:
trk[b] = v
out[b] = i
return out
Настройка
import numpy_indexed as npi
import numpy as np
import pandas as pd
from timeit import timeit
import matplotlib.pyplot as plt
from numba import njit
from scipy import sparse
res = pd.DataFrame(
index=['chris', 'chris2', 'chris3', 'divakar', 'divakar2', 'user545424', 'user2699', 'sacul', 'piRSquared'],
columns=[10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000, 500000],
dtype=float
)
k = 5
for f in res.index:
for c in res.columns:
bins = np.random.randint(0, k, c)
k = 5
vals = np.random.rand(c)
df = pd.DataFrame({'bins': bins, 'vals': vals})
stmt = '{}(df)'.format(f) if f in {'chris2'} else '{}(bins, vals, k)'.format(f)
setp = 'from __main__ import bins, vals, k, df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=50)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
Результаты

Результаты с гораздо большим k
(Это место, где радиовещание сильно пострадали):
res = pd.DataFrame(
index=['chris', 'chris2', 'chris3', 'divakar', 'divakar2', 'user545424', 'user2699', 'sacul', 'piRSquared'],
columns=[10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000, 500000],
dtype=float
)
k = 500
for f in res.index:
for c in res.columns:
bins = np.random.randint(0, k, c)
vals = np.random.rand(c)
df = pd.DataFrame({'bins': bins, 'vals': vals})
stmt = '{}(df)'.format(f) if f in {'chris2'} else '{}(bins, vals, k)'.format(f)
setp = 'from __main__ import bins, vals, df, k, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=50)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()

Как видно из графиков, вещание - это хитрый трюк, когда количество групп невелико, однако сложность времени / память вещания слишком быстро увеличивается при увеличении k
значений для высокой производительности.