R: гистограмма с большим набором данных - PullRequest
0 голосов
/ 25 апреля 2018

Цель

Из data.frame d я пытаюсь составить гистограмму столбца cMPerSite, взвешенного по bpInPiece. Другими словами, bpInPiece - это число наблюдений при каждом значении cMPerSite.

Ось Y должна представлять плотности, а ось X должна быть в логарифмическом масштабе.

Попытка

Я мог бы сделать что-то подобное (что можно улучшить, предварительно выделив размер памяти для x).

x = c()
for (row in 1:nrow(d))
{
    x = c(x, rep(d$cMPerSite[row],d$bpInPiece[row]))
}
hist(x,breaks=100, freq=FALSE)

enter image description here

, но это становится совершенно непрактичным, когда данных слишком много (у меня около 10 миллионов строк в моем полном наборе данных), потому что x становится слишком большим для хранения в ОЗУ. Кроме того, перевод оси X в логарифмическую шкалу, по-моему, непросто.

В качестве альтернативы я бы подумал, что смогу сделать

ggplot(d) + geom_histogram(aes(x = cMPerSite, y=bpInPiece), stat="identity") + scale_x_log10() + theme_classic(25)
Warning: Ignoring unknown parameters: binwidth, bins, pad

enter image description here

но по какой-то причине я не понимаю, ничего не отображается. Кроме того, я не уверен, как поместить ось Y в плотность, а не считать.

Я полагаю, что размер ячейки должен меняться логарифмически, так как ось Х меняется, но это меня смущает, так как это приведет к тому, что ячейки соберут "искусственное" большое количество наблюдений. Не уверен, как гистограммы обычно отображаются с логарифмической шкалой X оси. Обратите внимание, что ggplot(d) + geom_histogram(aes(x = cMPerSite, y=bpInPiece), stat="identity") также ничего не отображает, поэтому проблема заключается не только в масштабе журнала на оси X.

Можете ли вы помочь мне сделать эту гистограмму?

Подмножество моих данных

structure(list(chrom = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), end = c(241608, 
612298, 715797, 956634, 983330, 1190613, 1236417, 1330208, 1391915, 
1464000, 1911436, 1913462, 2092038, 2169783, 2354812, 2363639, 
2544241, 2551672, 2575287, 2589721, 2659117, 2884565, 3037319, 
3100967, 3152276, 4319658, 4335072, 6301896, 6550219, 6596684, 
7132319, 7435267, 7469158, 7604030, 7937619, 8131876, 9359659, 
9598491, 9945959, 10262757, 10392172, 10646861, 10816847, 11094415, 
11360199, 11964985, 12220179, 12222166, 12389943), cMInPiece = c(0, 
1e-07, 1e-07, 0.7118558, 9.99999999473644e-08, 0.9540829, 9.99999998363421e-08, 
0.4967211, 1.244988, 0.2137991, 8.808171, 0.500545200000001, 
1.5721302, 1.6856566, 2.2552469, 1.0000000116861e-07, 2.6973586, 
0.355113100000001, 0.355233800000001, 1.0000000116861e-07, 1.4903822, 
2.8174978, 1.0000000116861e-07, 0.355231, 1.0000000116861e-07, 
8.2735924, 0.425817699999996, 6.4568106, 0.372779399999999, 0.363684999999997, 
0.181640399999999, 0.177473599999999, 1.0000000116861e-07, 0.177463800000005, 
0.355294099999995, 1.0000000116861e-07, 1.6101482, 1.0000000116861e-07, 
0.533477099999999, 0.355287800000006, 9.99999940631824e-08, 1.0000000116861e-07, 
1.0000000116861e-07, 1.0000000116861e-07, 1.0000000116861e-07, 
1.0000000116861e-07, 9.99999940631824e-08, 1.0000000116861e-07, 
1.0000000116861e-07), bpInPiece = c(241608, 370690, 103499, 240837, 
26696, 207283, 45804, 93791, 61707, 72085, 447436, 2026, 178576, 
77745, 185029, 8827, 180602, 7431, 23615, 14434, 69396, 225448, 
152754, 63648, 51309, 1167382, 15414, 1966824, 248323, 46465, 
535635, 302948, 33891, 134872, 333589, 194257, 1227783, 238832, 
347468, 316798, 129415, 254689, 169986, 277568, 265784, 604786, 
255194, 1987, 167777), cMPerSite = c(1e-16, 2.69767190914241e-13, 
9.66192910076426e-13, 2.95575762860358e-06, 3.74587953054257e-12, 
4.60280341369046e-06, 2.18321543612659e-12, 5.29604226418313e-06, 
2.01757985317711e-05, 2.96593049871679e-06, 1.96858790977928e-05, 
0.000247060809476802, 8.80370374518411e-06, 2.16818650717088e-05, 
1.21886131363192e-05, 1.13288774406491e-11, 1.49353750235324e-05, 
4.77880635176962e-05, 1.50427186110523e-05, 6.92808654348135e-12, 
2.14764856764078e-05, 1.24973288740641e-05, 6.54647349127419e-13, 
5.58118086978381e-06, 1.94897583598608e-12, 7.08730509807415e-06, 
2.76253860127155e-05, 3.28286140498591e-06, 1.50118756619403e-06, 
7.82707414182711e-06, 3.39112268615754e-07, 5.85821989252278e-07, 
2.95063589650969e-12, 1.31579423453352e-06, 1.06506539484214e-06, 
5.14781970114898e-13, 1.31142734506016e-06, 4.18704366117646e-13, 
1.53532728193675e-06, 1.1214963478305e-06, 7.72707909154135e-13, 
3.92635728942395e-13, 5.88283747888707e-13, 3.60272081683082e-13, 
3.76245376578762e-13, 1.65347744770232e-13, 3.91858719496471e-13, 
5.03271269092148e-11, 5.96029260080999e-13)), .Names = c("chrom", 
"end", "cMInPiece", "bpInPiece", "cMPerSite"), row.names = c(NA, 
-49L), class = "data.frame")

1 Ответ

0 голосов
/ 25 апреля 2018

Это может помочь вам начать

Предполагая, что ваши данные слишком велики для обработки за один шаг - идея состоит в том, чтобы вручную сгенерировать гистограмму, которая, по сути, представляет собой количество наблюдений на одну ячейку

1) Разделите ваш data.frame до размера, который будет управляться для вашей памяти - N может быть любым числом

    N <- 10
    L <- split(df, cut(seq_len(nrow(df)), breaks=N))

2) Для каждого разделения

  • сумма bpInPieceдля каждой группы - { i %>% group_by(G = floor(-log10(cMPerSite))) %>% summarise(sum=sum(bpInPiece)) }
  • Затем объедините все разбиения - %>% group_by(G) %>% summarise(sum = sum(sum))
  • Затем построите график - ggplot(...)

    library(tidyverse)
    counts <- map_df(L, function(i) { i %>% group_by(G = floor(-log10(cMPerSite))) %>% summarise(sum=sum(bpInPiece)) }) %>%
                 group_by(G) %>% summarise(sum = sum(sum)) %>%
                 ggplot(., aes(G, sum)) + geom_col()
    counts
    
...