Я использую cnn с моделью lstm, используя распределенный по времени слой для классификации изображений. Хотя я скомпилировал модель, все равно она показывает
RuntimeError: You must compile your model before using it.
Я искал на нескольких сайтах, но не могу найти решение своей проблемы.
Вот мой код:
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import TimeDistributed
from keras.layers import LSTM
import warnings
warnings.filterwarnings('ignore')
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(TimeDistributed(Convolution2D(32, (3, 3), padding = 'same', input_shape = (128, 128, 3),
activation = 'relu')))
# Step 2 -
classifier.add(TimeDistributed(MaxPooling2D(pool_size = (2, 2))))
# Adding a second convolutional layer
classifier.add(TimeDistributed(Convolution2D(64, (3, 3), padding = 'same', activation = 'relu')))
classifier.add(TimeDistributed(MaxPooling2D(pool_size = (2, 2))))
# Adding a third conolutional layer
classifier.add(TimeDistributed(Convolution2D(64, (3, 3), padding = 'same', activation = 'relu')))
classifier.add(TimeDistributed(MaxPooling2D(pool_size = (2, 2))))
# Step 3 - Flattening
classifier.add(TimeDistributed(Flatten()))
classifier.add(Dropout(rate = 0.5))
# Step 4 - Full connection
classifier.add(LSTM(256, return_sequences=False, dropout=0.5))
classifier.add(Dense(output_dim = 8, activation = 'softmax'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
height_shift_range = 0.1,
width_shift_range = 0.1,
channel_shift_range = 10)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/mel/train/',
target_size = (128, 128),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('dataset/mel/test/',
target_size = (128, 128),
batch_size = 32,
class_mode = 'categorical')
classifier.fit_generator(training_set,
samples_per_epoch = 1088,
nb_epoch = 1,
validation_data = test_set,
nb_val_samples = 352)
Вот полное выходное сообщение:
Found 1088 images belonging to 8 classes.
Found 352 images belonging to 8 classes.
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-8-6a3839aea8f8> in <module>()
81 nb_epoch = 1,
82 validation_data = test_set,
---> 83 nb_val_samples = 352)
~/.local/lib/python3.5/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name +
90 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~/.local/lib/python3.5/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1424 use_multiprocessing=use_multiprocessing,
1425 shuffle=shuffle,
-> 1426 initial_epoch=initial_epoch)
1427
1428 @interfaces.legacy_generator_methods_support
~/.local/lib/python3.5/site-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
35
36 do_validation = bool(validation_data)
---> 37 model._make_train_function()
38 if do_validation:
39 model._make_test_function()
~/.local/lib/python3.5/site-packages/keras/engine/training.py in _make_train_function(self)
482 def _make_train_function(self):
483 if not hasattr(self, 'train_function'):
--> 484 raise RuntimeError('You must compile your model before using it.')
485 self._check_trainable_weights_consistency()
486 if self.train_function is None:
RuntimeError: You must compile your model before using it.
Какие могут быть возможные ошибки.
Спасибо