Мне удалось взломать решение с помощью модуля marshal
(в дополнение к pickle
) и переопределить магические методы getstate
и setstate
, используемые pickle
.
import marshal
from types import FunctionType
from sklearn.base import BaseEstimator, TransformerMixin
class MyFunctionTransformer(BaseEstimator, TransformerMixin):
def __init__(self, f):
self.func = f
def __call__(self, X):
return self.func(X)
def __getstate__(self):
self.func_name = self.func.__name__
self.func_code = marshal.dumps(self.func.__code__)
del self.func
return self.__dict__
def __setstate__(self, d):
d["func"] = FunctionType(marshal.loads(d["func_code"]), globals(), d["func_name"])
del d["func_name"]
del d["func_code"]
self.__dict__ = d
def fit(self, X, y=None):
return self
def transform(self, X):
return self.func(X)
Теперь, если мы используем MyFunctionTransformer
вместо FunctionTransformer
, код работает так, как ожидается:
from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
@MyFunctionTransformer
def my_transform(x):
return x*2
pipe = Pipeline([("times_2", my_transform)])
joblib.dump(pipe, "pipe.joblib")
del pipe
del my_transform
pipe = joblib.load("pipe.joblib")
Это работает, удалив функцию f
из рассылки и вместо marshaling
его код и его имя.
dill
также выглядит как хорошая альтернатива маршалингу