Я использовал LSTM в Керасе с Tensorflow.
Я хотел бы реализовать оценку позиции.
Я хочу ввести фильм (1 сцена - 15 кадров) и оценить положение движенияквадрат в фильме.
Ввод 15 кадров.Выходное значение равно 2 переменным (x, y).
В следующем коде точность оценки слишком низкая.Что я должен делать?И я не понимаю AveragePooling3D / Reshape (без этого он не будет работать.).
# We create a layer which take as input movies of shape
# (n_frames, width, height, channels) and returns a movie
# of identical shape.
seq = Sequential()
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
input_shape=(None, 80, 80, 1),
padding='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
seq.add(BatchNormalization())
#seq.add(Flatten())
seq.add(AveragePooling3D((1, 80, 80)))
seq.add(Reshape((-1, 40)))
seq.add(Dense(2))
#seq.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
# activation='sigmoid',
# padding='same', data_format='channels_last'))
seq.compile(loss='mean_squared_error', optimizer='adam')
def generate_movies(n_samples=1200, n_frames=15):
row = 80
col = 80
noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)
shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),
dtype=np.float)
square_x_y = np.zeros((n_samples, n_frames, 2), dtype=np.float)
for i in range(n_samples):
for j in range(1):
# Initial position
xstart = np.random.randint(20, 60)
ystart = np.random.randint(20, 60)
# Direction of motion
directionx = np.random.randint(0, 3) - 1
directiony = np.random.randint(0, 3) - 1
# Size of the square
w = np.random.randint(2, 4)
for t in range(n_frames):
x_shift = xstart + directionx * t
y_shift = ystart + directiony * t
noisy_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
# Make it more robust by adding noise.
# The idea is that if during inference,
# the value of the pixel is not exactly one,
# we need to train the network to be robust and still
# consider it as a pixel belonging to a square.
if np.random.randint(0, 2):
noise_f = (-1)**np.random.randint(0, 2)
noisy_movies[i, t,
x_shift - w - 1: x_shift + w + 1,
y_shift - w - 1: y_shift + w + 1,
0] += noise_f * 0.1
# Shift the ground truth by 1
x_shift = xstart + directionx * (t + 1)
y_shift = ystart + directiony * (t + 1)
shifted_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
square_x_y[i, t, 0] = x_shift/row
square_x_y[i, t, 1] = y_shift/col
# Cut to a 40x40 window
#noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
#shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
#noisy_movies[noisy_movies >= 1] = 1
#shifted_movies[shifted_movies >= 1] = 1
return noisy_movies, shifted_movies, square_x_y
# Train the network
noisy_movies, shifted_movies, sq_x_y = generate_movies(n_samples = 1200)
seq.fit(noisy_movies[:1000], sq_x_y[:1000], batch_size=10,
epochs=1, validation_split=0.05)