Я пытаюсь обучить сверточную нейронную сеть Tensorflow на моем RaspberryPi 3B.Я получаю следующую ошибку:
2018-08-19 18:57:07.720022: F./tensorflow/core/util/bcast.h:111] Check failed:
vec.size() == NDIMS (1 vs. 2)
Aborted
Не знаю, что происходит не так, но вот код:
import tensorflow as tf
import numpy as np
import csv
import pandas as pd
import os
image_height = 60
image_width = 1
image1_height = 15
image2_height = 1
model_name = "TensorflowCNN"
#Training Data Configuration
train_data = np.asarray(pd.read_csv("/media/pi/DISK_IMG/TrainingInput.csv", usecols=[1]))
lis = train_data.tolist()
lis = lis[0:60]
lis = [x[0].strip('[]\n,') for x in lis]
nlis = []
for i in lis:
nlis.append(i.split())
for i in range(len(nlis)):
nlis[i] = [float(x) for x in nlis[i] if x != "...,"]
nlis = [np.mean(x) for x in nlis]
train_data = np.asarray(nlis)
#Training Labels Configuration
train_labels = np.asarray(pd.read_csv("/media/pi/DISK_IMG/TrainingInput.csv", usecols=[2]))
mylist = train_labels.tolist()
mylist = mylist[0:60]
mylist = [x[0] for x in mylist]
index = 0
while index < len(mylist):
if mylist[index] == "GravelTraining":
mylist[index] = 1
elif mylist[index] == "WaterTraining":
mylist[index] = 2
else:
mylist[index] = 3
index=index+1
train_labels = np.asarray(mylist)
#Validation Data Configuration
eval_data = np.asarray(pd.read_csv("/media/pi/DISK_IMG/TestingInput.csv", usecols=[1]))
List = eval_data.tolist()
List = List[0:15]
eval_data = np.asarray(List)
#Validation Labels Configuration
eval_labels = np.asarray(pd.read_csv("/media/pi/DISK_IMG/TestingInput.csv", usecols=[2]))
myList = eval_labels.tolist()
myList = myList[0:15]
index = 0
while index < len(myList):
if myList[index] == "GravelTesting":
myList[index] = 1
elif myList[index] == "WaterTesting":
myList[index] = 2
else:
myList[index] = 3
index=index+1
eval_labels = np.asarray(myList)
category_names = list(map(str, range(3)))
#Processing and reshaping data
train_data = np.reshape(train_data, (-1, image_height, image_width, 1))
train_labels = np.reshape(train_labels, (-1, image_height, image_width, 1))
eval_data = np.reshape(eval_data, (-1, image1_height, image2_height, 1))
eval_labels = np.reshape(eval_labels, (-1, image1_height, image2_height, 1))
#CLASS FOR THE CONVOLUTIONAL NEURAL NETWORK
class ConvNet:
def __init__(self, image_height, Image_width, num_classes, chan):
self.input_layer = tf.placeholder(dtype = tf.float32, shape = [1,image_height, Image_width, chan], name = "inputs")
conv_layer_1 = tf.layers.conv2d(self.input_layer, filters = 32, kernel_size = [5,5], padding = "same", activation = tf.nn.relu)
pooling_layer_1 = tf.layers.max_pooling2d(conv_layer_1, pool_size = [2,1], strides = 1)
flattened_pooling = tf.layers.flatten(pooling_layer_1)
dense_layer = tf.layers.dense(flattened_pooling, 60, activation = tf.nn.relu)
dropout = tf.layers.dropout(dense_layer, rate = 0.4, training = True)
output_dense_layer = tf.layers.dense(dropout, num_classes)
self.choice = tf.argmax(output_dense_layer, axis=1)
self.probabilities = tf.nn.softmax(output_dense_layer)
self.labels = tf.placeholder(dtype=tf.float32, name="labels")
self.accuracy, self.accuracy_op = tf.metrics.accuracy(self.labels, self.choice)
one_hot_labels = tf.one_hot(indices=tf.cast(self.labels, dtype=tf.int32), depth=num_classes)
self.loss = tf.losses.softmax_cross_entropy(onehot_labels = one_hot_labels, logits=output_dense_layer)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-2)
self.train_operation = optimizer.minimize(loss=self.loss, global_step=tf.train.get_global_step())
#Training process:variables
training_steps = 20000
batch_size = 60
path = "./" + model_name + "-cnn/"
load_checkpoint = False
tf.reset_default_graph()
dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
dataset = dataset.shuffle(buffer_size=train_labels.shape[0])
dataset = dataset.batch(batch_size)
dataset = dataset.repeat()
dataset_iterator = dataset.make_initializable_iterator()
next_element = dataset_iterator.get_next()
#Final initialization of Neural Network and Training Process
cnn = ConvNet(image_height, image_width, 1, 1)
print("milestone1")
saver = tf.train.Saver(max_to_keep=2)
print('milestone2')
if not os.path.exists(path):
os.makedirs(path)
print('milestone3')
#Training Loop For neural network
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('milestone4')
sess.run(tf.local_variables_initializer())
sess.run(dataset_iterator.initializer)
for step in range(training_steps):
current_batch = sess.run(next_element)
batch_inputs = current_batch[0]
batch_labels = current_batch[1]
print("milestone5")
sess.run((cnn.train_operation, cnn.accuracy_op), feed_dict={cnn.input_layer:batch_inputs, cnn.labels:batch_labels})
if step % 1 == 0 and step > 0:
current_acc = sess.run(cnn.accuracy)
print("Accuracy at step " + str(step) + ":" + str(current_acc))
saver.save(sess, path + model_name, step)
print("Saving final checkpoint for training session.")
saver.save(sess, path + model_name, step)
Я знаю, что это долго, но я был бы признателен, если бы кто-то мог позволить мнезнаю, что не так с моей программой.Следов нет. Я получаю уведомление от Stack Overflow, что мой пост в основном состоит из кода, но на самом деле о проблеме сказать немного.Кроме того, я посмотрел на многие вопросы об этом и не нашел ответа ни на один из них, который мог бы использовать.Заранее спасибо!