Ну, я нашел очень очень грязное решение, чтобы решить его прямо сейчас, но я все еще надеюсь, что кто-то может дать мне более изящный способ решения этой проблемы с областью действия.
indicators <- mtcars[,c(-1,-6)]
input = list(y='mpg')
tmp.model <- function(){
# directly write into global environment.....
.GlobalEnv$tmp.data = cbind(mtcars[input$y], indicators)
biggest = as.formula(lm(paste(input$y,"~."), tmp.data))
tmp.model = lm(paste(input$y,"~disp"), tmp.data)
tmp.model = step(tmp.model, direction="forward", scope=biggest, k=log(nrow(mtcars))) # tmp.data not found
tmp.model
}
summary(tmp.model())
Обновление: Благодаря ответу mhammer , теперь у нас есть чистое решение
model_fun <- function(df, resp_var, must_include, maybe_include) {
begin <- as.formula(paste0(resp_var, " ~ ", paste(must_include, collapse = " + ")))
biggest <- as.formula(paste0(resp_var, " ~ ", paste(c(must_include, maybe_include), collapse = " + ")))
lm_fit <- lm(begin, data = df)
step_fit <- step(lm_fit, direction = "forward", scope = biggest, k = log(nrow(df)))
step_fit
}
model_fun(mtcars, "mpg", "disp", c("cyl", "hp", "drat", "qsec", "vs", "am", "gear", "carb"))