В целом, я хочу создать фильтр для вычисления среднего значения круговых величин для трехмерных массивов.
Я заглянул в scipy.ndimage.generic_filter, но не смог скомпилировать фильтр, как описано в https://ilovesymposia.com/tag/numba,, по-видимому, из-за ошибки в numba в Windows.
Затем я попытался создать свою собственную реализацию, которая проходит по массиву, и надеялся, что сможет потом его объединить. Он работает нормально (и медленно) без numba, но компиляция jit не удалась, и я не могу декодировать TypingError.
сетка numpy не поддерживается, поэтому поведение этого тоже должно было быть построено (дешевая версия).
from numba import njit
import numpy as np
@njit
def my_meshgrid(i_, j_,k_):
#Note: axes 0 and 1 are swapped!
shape = (len(j_), len(i_), len(k_))
io = np.empty(shape, dtype=np.int32)
jo = np.empty(shape, dtype=np.int32)
ko = np.empty(shape, dtype=np.int32)
for i in range(len(i_)):
for j in range(len(j_)):
for k in range(len(k_)):
io[j,i,k] = i_[i]
jo[j,i,k] = j_[j]
ko[j,i,k] = k_[k]
return [io,jo, ko]
t3 = my_meshgrid(range(5), range(5,7), range(7,10))
#
@njit
def get_footprint(arr, i , j , k, size=3):
s = size
ranges = [range(d-s+1+1,d+s-1) for d in [i,j,k]]
#Mirror the case where indexes are less than zero
ind = np.abs(np.meshgrid(*ranges))
#Mirror the case where indexes are higher than arr.shape:
for d in range(len(arr.shape)):
indd = ind[d] - arr.shape[d]
indd *= -1
indd = np.abs(indd)
indd *= -1
ind[d] = indd
return arr[ind]
@njit
def mean_angle_filter(degrees, size = 3):
size = [size]*len(degrees.shape)
out = np.empty_like(degrees)
for i in range(degrees.shape[0]):
for j in range(degrees.shape[1]):
for k in range(degrees.shape[2]):
out[i,j,k] = mean_angle(get_footprint(degrees, i,j,k,3))
return out
@njit
def mean_angle(degrees):
'''
https://en.wikipedia.org/wiki/Mean_of_circular_quantities
'''
x = np.mean(np.cos(degrees*np.pi/180))
y = np.mean(np.sin(degrees*np.pi/180))
return np.arctan2(y,x)*180/np.pi
degrees = np.random.random([20]*3)*90
mean_angle_filter(degrees)
Будучи новичком в numba, я был бы рад получить исправление для этой (или подобной) реализации, но любая (быстрая) реализация фильтра mean_angle в numpy также была бы признательна