Как я могу исправить эту AttributeError? - PullRequest
0 голосов
/ 26 апреля 2018

Я получаю эту ошибку в терминале:

Traceback (most recent call last):
    File "inference.py", line 277, in <module>
      answers = process_questions(question)[0]
    File "inference.py", line 238, in process_questions
      answers_list = inference_helper(prepared_questions)
    File "inference.py", line 163, in start_inference
      inference_object = do_start_inference(out_dir, hparams)
    File "inference.py", line 37, in do_start_inference
      nmt.add_arguments(nmt_parser)
AttributeError: module 'nmt' has no attribute 'add_arguments'

Я пытаюсь импортировать файл nmt.py из nmt_chatbot / nmt / nmt в файл inference.py. Как показано на встроенном изображении, файлы inference.py и nmt.py находятся в одной папке.

Я получил эту строку в файле inference.py: импорт нмт

Это изображение показывает, как организованы мои папки и файлы

Это полный код файла inference.py ниже:

import sys импорт ОС sys.path.append (os.path.realpath (os.path.dirname ( файл ))) sys.path.append (os.path.realpath (os.path.dirname ( file )) + "/ nmt") импорт argparse из setup.settings импортируйте hparams, out_dir, предварительную обработку импорт НМТ импортировать тензор потока как тф Из core.tokenizer импортируйте токены, детокенизируйте, apply_bpe, apply_bpe_load из core.sentence import score_answers, replace_in_answers импортная колорама

current_stdout = Нет

Запуск логического вывода "двигатель"

def do_start_inference (out_dir, hparams):

# Silence all outputs
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
global current_stdout
current_stdout = sys.stdout
sys.stdout = open(os.devnull, "w")

# Modified autorun from nmt.py (bottom of the file)
# We want to use original argument parser (for validation, etc)
nmt_parser = argparse.ArgumentParser()
nmt.add_arguments(nmt_parser)
# But we have to hack settings from our config in there instead of commandline options
flags, unparsed = nmt_parser.parse_known_args(['--'+k+'='+str(v) for k,v in hparams.items()])
# And now we can run TF with modified arguments
#tf.app.run(main=nmt.main, argv=[os.getcwd() + '\nmt\nmt\nmt.py'] + unparsed)

# Add output (model) folder to flags
flags.out_dir = out_dir

# Make hparams
hparams = nmt.create_hparams(flags)

## Train / Decode
if not tf.gfile.Exists(flags.out_dir):
    nmt.utils.print_out("# Model folder (out_dir) doesn't exist")
    sys.exit()

# Load hparams from model folder
hparams = nmt.create_or_load_hparams(flags.out_dir, hparams, flags.hparams_path, save_hparams=True)

# Choose checkpoint (provided with hparams or last one)
if not flags.ckpt:
    flags.ckpt = tf.train.latest_checkpoint(flags.out_dir)

# Create model
if not hparams.attention:
    model_creator = nmt.inference.nmt_model.Model
elif hparams.attention_architecture == "standard":
    model_creator = nmt.inference.attention_model.AttentionModel
elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]:
    model_creator = nmt.inference.gnmt_model.GNMTModel
else:
    raise ValueError("Unknown model architecture")
infer_model = nmt.inference.model_helper.create_infer_model(model_creator, hparams, None)

return (infer_model, flags, hparams)

Выведение

def do_inference (infer_data, infer_model, flags, hparams):

# Disable TF logs for a while
# Workaround for bug: https://github.com/tensorflow/tensorflow/issues/12414
# Already fixed, available in nightly builds, but not in stable version
# Maybe that will stay here to silence any outputs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
global current_stdout
if not current_stdout:
    current_stdout = sys.stdout
    sys.stdout = open(os.devnull, "w")

# Spawn new session
with tf.Session(graph=infer_model.graph, config=nmt.utils.get_config_proto()) as sess:

    # Load model
    loaded_infer_model = nmt.inference.model_helper.load_model(infer_model.model, flags.ckpt, sess, "infer")

    # Run model (translate)
    sess.run(
        infer_model.iterator.initializer,
        feed_dict={
            infer_model.src_placeholder: infer_data,
            infer_model.batch_size_placeholder: hparams.infer_batch_size
        })


    # calculate number of translations to be returned
    num_translations_per_input = max(min(hparams.num_translations_per_input, hparams.beam_width), 1)

    answers = []
    while True:
        try:

            nmt_outputs, _ = loaded_infer_model.decode(sess)

            if hparams.beam_width == 0:
                nmt_outputs = nmt.inference.nmt_model.np.expand_dims(nmt_outputs, 0)

            batch_size = nmt_outputs.shape[1]

            for sent_id in range(batch_size):

                # Iterate through responses
                translations = []
                for beam_id in range(num_translations_per_input):

                    if hparams.eos: tgt_eos = hparams.eos.encode("utf-8")

                    # Select a sentence
                    output = nmt_outputs[beam_id][sent_id, :].tolist()

                    # If there is an eos symbol in outputs, cut them at that point
                    if tgt_eos and tgt_eos in output:
                        output = output[:output.index(tgt_eos)]
                    print(output)

                    # Format response
                    if hparams.subword_option == "bpe":  # BPE
                        translation = nmt.utils.format_bpe_text(output)
                    elif hparams.subword_option == "spm":  # SPM
                        translation = nmt.utils.format_spm_text(output)
                    else:
                        translation = nmt.utils.format_text(output)

                    # Add response to the list
                    translations.append(translation.decode('utf-8'))

                answers.append(translations)

        except tf.errors.OutOfRangeError:
            print("end")
            break

    # bug workaround end
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
    sys.stdout.close()
    sys.stdout = current_stdout
    current_stdout = None

    return answers

Необычный способ начать все с первого вызова () вызова

def start_inference (вопрос):

global inference_helper, inference_object

# Start inference, set global tuple with model, flags and hparams
inference_object = do_start_inference(out_dir, hparams)

# First inference() call calls that method
# Now we have everything running, so replace inference() with actual function call
inference_helper = lambda question: do_inference(question, *inference_object)

# Load BPE join pairs
if preprocessing['use_bpe']:
    apply_bpe_load()

# Rerun inference() call
return inference_helper(question)

Модель, флаги и хпарамы

inference_object = Нет

Помощник вызова функции (вызывает start_inference при первом вызове, затем do_inference)

inference_helper = start_inference

Основная функция логического вывода

логический вывод (вопросы, include_blacklisted = True):

# Process questions
answers_list = process_questions(questions, include_blacklisted)

# Return (one or more?)
if len(answers_list) == 1:
    return answers_list[0]
else:
    return answers_list

Функция внутреннего вывода (для прямого вызова)

def inference_internal (вопросы):

# Process questions and return
return process_questions(questions)

Получить индекс и получить лучший ответ

def get_best_score (answers_score, include_blacklisted = True):

try:
    index = answers_score.index(1)
    score = 1
except:
    index = None

if index is None and include_blacklisted:
    try:
        index = answers_score.index(0)
        score = 0
    except:
        index = 0
        score = -1

if index is None:
    index = 0
    score = -1

return (index, score)

Обработка вопроса или списка вопросов

def process_questions (вопросы, include_blacklisted = True):

# Make a list
if not isinstance(questions, list):
    questions = [questions]

# Clean and tokenize
prepared_questions = []
for question in questions:
    question = question.strip()
    prepared_questions.append(apply_bpe(tokenize(question)) if question else '##emptyquestion##')

# Run inference
answers_list = inference_helper(prepared_questions)

# Process answers
prepared_answers_list = []
for index, answers in enumerate(answers_list):
    answers = detokenize(answers)
    answers = replace_in_answers(answers)
    answers_score = score_answers(answers)
    best_index, best_score = get_best_score(answers_score, include_blacklisted)

    if prepared_questions[index] == '##emptyquestion##':
        prepared_answers_list.append(None)
    else:
        prepared_answers_list.append({'answers': answers, 'scores': answers_score, 'best_index': best_index, 'best_score': best_score})

return prepared_answers_list

интерактивный режим

если имя == " main ":

# Input file
if sys.stdin.isatty() == False:

    # Process questions
    answers_list = process_questions(sys.stdin.readlines())

    # Print answers
    for answers in answers_list:
        print(answers['answers'][answers['best_index']])

    sys.exit()

# Interactive mode
print("\n\nStarting interactive mode (first response will take a while):")
colorama.init()

# QAs
while True:
    question = input("\n> ")
    answers = process_questions(question)[0]
    if answers is None:
        print(colorama.Fore.RED + "! Question can't be empty")
    else:
        for i, _ in enumerate(answers['scores']):
            print("{}- {}{}".format(colorama.Fore.GREEN if answers['scores'][i] == 1 else colorama.Fore.YELLOW if answers['scores'][i] == 0 else colorama.Fore.RED, answers['answers'][i], colorama.Fore.RESET))

1 Ответ

0 голосов
/ 26 апреля 2018

Здесь очень много кода, который не имеет отношения к вашему вопросу, но ваша проблема здесь:

nmt.add_arguments(nmt_parser)

В вашем сообщении говорится, что модуль nmt на самом деле не содержит функции add_arguments. Начните с просмотра модуля или его документации, чтобы выяснить, почему это не так, даже если ваш источник говорит, что это так.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...