Я пытаюсь создать .NET эквивалент Javascript кода ниже. Я попробовал то, что я поделился в разделе ".NET SHA1", но он сгенерировал разные хеш-результаты Я попытался перевести код JavaScript на C # (который я тоже поделился), который тоже не работает. Что я делаю не так, как я могу получить то же значение хеша, сгенерированное функцией JavaScript в C #?
.NET SHA1 Хэш:
public string CreateHash(string a, string b, string c)
{
string concatenation = string.Concat(a, b, c);
SHA1 sha = new SHA1CryptoServiceProvider();
byte[] byt = Encoding.GetEncoding(0).GetBytes(concatenation);
byte[] hash = sha.ComputeHash(byt);
return Convert.ToBase64String(hash);
}
Код Javascript:
function createHash()
{
var hashdata = somestringconcat;
m.digest.value = encode64(sha1Hash(hashdata));
return 0;
}
var keyStr = "ABCDEFGHIJKLMNOP" +
"QRSTUVWXYZabcdef" +
"ghijklmnopqrstuv" +
"wxyz0123456789+/" +
"=";
function encode64(input) {
var output = "";
var chr1, chr2, chr3 = "";
var enc1, enc2, enc3, enc4 = "";
var i = 0;
do {
chr1 = eval('0x' + input.charAt(i++) + input.charAt(i++));
if (i<input.length)
chr2 = eval('0x' + input.charAt(i++) + input.charAt(i++));
else
i=i+2;
if (i<input.length)
chr3 = eval('0x' + input.charAt(i++) + input.charAt(i++));
else
i=i+2;
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (i == input.length + 4) {
enc3 = enc4 = 64;
} else if (i == input.length + 2) {
enc4 = 64;
}
output = output +
keyStr.charAt(enc1) +
keyStr.charAt(enc2) +
keyStr.charAt(enc3) +
keyStr.charAt(enc4);
chr1 = chr2 = chr3 = "";
enc1 = enc2 = enc3 = enc4 = "";
} while (i < input.length);
return output;
}
function sha1Hash(msg)
{
// constants [4.2.1]
var K = [0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6];
// PREPROCESSING
msg += String.fromCharCode(0x80); // add trailing '1' bit to string [5.1.1]
// convert string msg into 512-bit/16-integer blocks arrays of ints [5.2.1]
var l = Math.ceil(msg.length/4) + 2; // long enough to contain msg plus 2-word length
var N = Math.ceil(l/16); // in N 16-int blocks
var M = new Array(N);
for (var i=0; i<N; i++) {
M[i] = new Array(16);
for (var j=0; j<16; j++) { // encode 4 chars per integer, big-endian encoding
M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) |
(msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3));
}
}
// add length (in bits) into final pair of 32-bit integers (big-endian) [5.1.1]
// note: most significant word would be ((len-1)*8 >>> 32, but since JS converts
// bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14])
M[N-1][15] = ((msg.length-1)*8) & 0xffffffff;
// set initial hash value [5.3.1]
var H0 = 0x67452301;
var H1 = 0xefcdab89;
var H2 = 0x98badcfe;
var H3 = 0x10325476;
var H4 = 0xc3d2e1f0;
// HASH COMPUTATION [6.1.2]
var W = new Array(80); var a, b, c, d, e;
for (var i=0; i<N; i++) {
// 1 - prepare message schedule 'W'
for (var t=0; t<16; t++) W[t] = M[i][t];
for (var t=16; t<80; t++) W[t] = ROTL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
// 2 - initialise five working variables a, b, c, d, e with previous hash value
a = H0; b = H1; c = H2; d = H3; e = H4;
// 3 - main loop
for (var t=0; t<80; t++) {
var s = Math.floor(t/20); // seq for blocks of 'f' functions and 'K' constants
var T = (ROTL(a,5) + f(s,b,c,d) + e + K[s] + W[t]) & 0xffffffff;
e = d;
d = c;
c = ROTL(b, 30);
b = a;
a = T;
}
// 4 - compute the new intermediate hash value
H0 = (H0+a) & 0xffffffff; // note 'addition modulo 2^32'
H1 = (H1+b) & 0xffffffff;
H2 = (H2+c) & 0xffffffff;
H3 = (H3+d) & 0xffffffff;
H4 = (H4+e) & 0xffffffff;
}
return H0.toHexStr() + H1.toHexStr() + H2.toHexStr() + H3.toHexStr() + H4.toHexStr();
}
//
// function 'f' [4.1.1]
//
function f(s, x, y, z)
{
switch (s) {
case 0: return (x & y) ^ (~x & z);
case 1: return x ^ y ^ z;
case 2: return (x & y) ^ (x & z) ^ (y & z);
case 3: return x ^ y ^ z;
}
}
//
// rotate left (circular left shift) value x by n positions [3.2.5]
//
function ROTL(x, n)
{
return (x<<n) | (x>>>(32-n));
}
//
// extend Number class with a tailored hex-string method
// (note toString(16) is implementation-dependant, and
// in IE returns signed numbers when used on full words)
//
Number.prototype.toHexStr = function()
{
var s="", v;
for (var i=7; i>=0; i--) { v = (this>>>(i*4)) & 0xf; s += v.toString(16); }
return s;
}
C # Попытка перевода:
string Sha1Hash(string msg)
{
// constants [4.2.1]
uint[] K = new uint[] { 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 };
// PREPROCESSING
msg += Convert.ToChar(0x80); // add trailing '1' bit to string [5.1.1]
// convert string msg into 512-bit/16-integer blocks arrays of ints [5.2.1]
uint l = (uint)Math.Ceiling(msg.Length / 4d) + 2; // long enough to contain msg plus 2-word length
uint N = (uint)Math.Ceiling(l / 16d); // in N 16-int blocks
uint[][] M = new uint[N][];
for (int i = 0; i < N; i++)
{
M[i] = new uint[16];
for (int j = 0; j < 16; j++)
{ // encode 4 chars per integer, big-endian encoding
M[i][j] = (uint)((Convert.ToChar(i * 64 + j * 4) << 24) | (Convert.ToChar(i * 64 + j * 4 + 1) << 16) |
(Convert.ToChar(i * 64 + j * 4 + 2) << 8) | (Convert.ToChar(i * 64 + j * 4 + 3)));
}
}
// add length (in bits) into final pair of 32-bit integers (big-endian) [5.1.1]
// note: most significant word would be ((len-1)*8 >>> 32, but since JS converts
// bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
M[N - 1][14] = (uint)Math.Floor(((msg.Length - 1) * 8) / Math.Pow(2, 32));
M[N - 1][15] = (uint)((msg.Length - 1) * 8) & 0xffffffff;
// set initial hash value [5.3.1]
ulong H0 = 0x67452301;
ulong H1 = 0xefcdab89;
ulong H2 = 0x98badcfe;
ulong H3 = 0x10325476;
ulong H4 = 0xc3d2e1f0;
// HASH COMPUTATION [6.1.2]
ulong[] W = new ulong[80];
ulong a, b, c, d, e;
for (int i = 0; i < N; i++)
{
// 1 - prepare message schedule 'W'
for (int t = 0; t < 16; t++) W[t] = M[i][t];
for (int t = 16; t < 80; t++) W[t] = ROTL(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
// 2 - initialise five working variables a, b, c, d, e with previous hash value
a = H0; b = H1; c = H2; d = H3; e = H4;
// 3 - main loop
for (int t = 0; t < 80; t++)
{
ulong s = (ulong)Math.Floor(t / 20d); // seq for blocks of 'f' functions and 'K' constants
var T = (ROTL(a, 5) + F(s, b, c, d) + e + K[s] + W[t]) & 0xffffffff;
e = d;
d = c;
c = ROTL(b, 30);
b = a;
a = T;
}
// 4 - compute the new intermediate hash value
H0 = (H0 + a) & 0xffffffff; // note 'addition modulo 2^32'
H1 = (H1 + b) & 0xffffffff;
H2 = (H2 + c) & 0xffffffff;
H3 = (H3 + d) & 0xffffffff;
H4 = (H4 + e) & 0xffffffff;
}
return string.Concat(ToHexStr(H0), ToHexStr(H1), ToHexStr(H2), ToHexStr(H3), ToHexStr(H4));
}
ulong ROTL(ulong x, int n)
{
return ((x << n) | (x >> (32 - n)));
}
string ToHexStr(ulong param)
{
return ""; //
}
ulong F(ulong s, ulong x, ulong y, ulong z)
{
switch (s)
{
case 0: return (x & y) ^ (~x & z);
case 1: return x ^ y ^ z;
case 2: return (x & y) ^ (x & z) ^ (y & z);
case 3: return x ^ y ^ z;
}
return 0;
}
const string keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
string Encode64(string input)
{
string output = "";
int chr1 = 0;
int chr2 = 0;
int chr3 = 0;
int enc1, enc2, enc3, enc4 = 0;
var i = 0;
do
{
chr1 = Convert.ToInt32(("0x" + input[i++] + input[i++]), 16);
if (i < input.Length)
chr2 = Convert.ToInt32(("0x" + input[i++] + input[i++]), 16);
else
i = i + 2;
if (i < input.Length)
chr3 = Convert.ToInt32(("0x" + input[i++] + input[i++]), 16);
else
i = i + 2;
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (i == input.Length + 4)
{
enc3 = enc4 = 64;
}
else if (i == input.Length + 2)
{
enc4 = 64;
}
output = output +
keyStr[enc1] +
keyStr[enc2] +
keyStr[enc3] +
keyStr[enc4];
chr1 = chr2 = chr3 = 0;
enc1 = enc2 = enc3 = enc4 = 0;
} while (i < input.Length);
return output;
}