Приведенная ниже функция может позволить подогнать данные. Это непрерывно, но не дифференцируемо везде. Шаги имеют тенденцию падать вправо, в то время как данные OP не делают. Это может потребовать дополнительной работы. Кроме того, шаги должны быть равноудалены, что, однако, кажется, имеет место.
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
def f( x, a, b ): # test function (that would be the one to fit, actually + a shift of edge position)
return a + b * x**3
def f_step( x, l, func, args=None ):
y = ( x - l / 2. ) % l - l / 2.
y = y / l * 2.
p = np.floor( ( x-l/2.) / (l) ) + 1
centre = p * l
left = centre - l / 2.
right = centre + l / 2.
fL = func( left, *args )
fR = func( right, *args )
fC = func( centre, *args )
out = fC + sharp( y , fL - fC, fR - fC , 5 )
return out
def sharp( x, a, b , p, epsilon=1e-1 ):
out = a * ( 1. / abs( x + 1 + epsilon )**p - ( 2 + epsilon)**( -p ) ) / ( epsilon**( -p ) - ( 2 + epsilon )**( -p ) )
out += b * ( 1. /abs( x - 1 - epsilon )**p - ( 2 + epsilon)**( -p ) ) / ( epsilon**( -p ) - ( 2 + epsilon )**( -p ) )
return out
l=0.57
xList = np.linspace( -1, 1.75, 500 )
yList = [ f_step( x, l, f, args=(2, -.3 ) ) for x in xList ]
fig1 = plt.figure( 1 )
ax = fig1.add_subplot( 1, 1, 1 )
ax.plot( xList, yList )
ax.plot( xList, f(xList, 2,-.3) )
plt.show()
выглядит как:
![Steps with varying height](https://i.stack.imgur.com/Dc7rT.png)