CAPM.beta rollapply - PullRequest
       92

CAPM.beta rollapply

0 голосов
/ 29 июня 2018

Я уже успешно рассчитал свои скользящие корреляции в моем xts объекте с

x <- cbind(market_return,stock_returns)
rollcor_3year <- rollapplyr(
    x, width=width_cor,function(x) cor(x[,1],x[,-1],
    use="pairwise.complete.obs"),by.column=FALSE)

Впоследствии корреляция использовалась для расчета скользящих бета.

Теперь я нашел функцию CAPM.beta из пакета PerformanceAnalytics, и мне интересно, почему я не могу использовать

beta <- rollapplyr(x,width=width_cor,function(x) CAPM.beta(x[,1],x[,-1]),by.column=FALSE)

или

beta <- rollapplyr(stock_returns,width=width_cor,CAPM.beta,Rb=market_return,by.column=FALSE)

непосредственно.

С обеими функциями он начинает вычислять, но не останавливается ...

Было бы неплохо посмотреть, получу ли я те же бета-версии из предопределенной функции, но, видимо, она не работает так. Что я сделал не так?

Ответы [ 2 ]

0 голосов
/ 03 июля 2018

Вот решение, как в ответе WaltS , но примерно в 16 раз быстрее, чем функция CovVar2 с использованием пакета rollRegres

library(xts)
library(quantmod)
library(PerformanceAnalytics)
library(microbenchmark)

# setup
assets <- c("SPY", "AMZN", "XOM")
getSymbols( assets, from = "2017-01-01", auto.assign = TRUE)
#R [1] "SPY"  "AMZN" "XOM"

asset_prices <- xts()
asset_prices <- Reduce(f=function(x,y) {y_sym=eval(as.name(y));  merge(x,y_sym[,paste0(y,".Adjusted")])},
                       x = assets, init=asset_prices)
asset_returns <- diff.xts(asset_prices, arithmetic = FALSE, na.pad=FALSE)-1

market_return <- asset_returns$SPY.Adjusted
stock_returns <- asset_returns[,-1]

# solution from WaltS's answer
width_cor <-  40
CovVar2 <- function(R){  cv = cov(R[,1], R );  cv[,-1]/cv[1,1] }
CovVar2_roll <- rollapplyr(
  data = merge(market_return, stock_returns), width=width_cor,
  FUN= CovVar2,  by.column=FALSE)

# rollRegres solution
library(rollRegres)
dat <- as.matrix(merge(market_return, stock_returns))
X  <- cbind(1, dat[, 1])
Ys <- dat[, -1, drop = FALSE]
roll_out <- apply(Ys, 2, function(y)
  roll_regres.fit(x = X, y = y, width = width_cor)$coefs[, 2])

# gives the same
all.equal(as.matrix(CovVar2_roll), roll_out, check.attributes = FALSE)
#R [1] TRUE

# much faster
microbenchmark(
  CovVar2 = rollapplyr(
    data = merge(market_return, stock_returns), width=width_cor,
    FUN= CovVar2,  by.column=FALSE),
  rollRegres = {
    dat <- as.matrix(merge(market_return, stock_returns))
    X  <- cbind(1, dat[, 1])
    Ys <- dat[, -1, drop = FALSE]
    roll_out <- apply(Ys, 2, function(y)
      roll_regres.fit(x = X, y = y, width = width_cor)$coefs[, 2])
  }, times = 10)
#R Unit: milliseconds
#R       expr       min        lq      mean    median        uq      max neval
#R    CovVar2 37.669941 39.086237 39.877981 39.530485 41.011374 41.71893    10
#R rollRegres  1.987162  2.036149  2.486836  2.102717  3.342224  3.73689    10
0 голосов
/ 29 июня 2018

На самом деле, функция PerformanceAnalytics даст те же результаты, но это займет больше времени. В приведенном ниже коде используются образцы данных за 2017-01-01 гг., А теперь AMZN и XOM в качестве акций, а SPY в качестве прокси для рыночной доходности. В скользящих расчетах используется окно из 40 торговых дней. Скользящее бета-значение рассчитывается с использованием функций CAPM.beta и BetaCoVariance из PerformanceAnalytics и тремя методами, которые непосредственно вычисляют ковариационную матрицу и затем принимают отношение парных ковариаций к рыночной дисперсии. Результаты методов отображаются, чтобы показать, что они одинаковы. microbenchmark из пакета microbenchmark используется для измерения времени выполнения для всех методов. Прямые вычисления на один-два порядка быстрее.

  library(xts)
  library(quantmod)
  library(PerformanceAnalytics)
  library(microbenchmark)
#
#  get price time histories and calculate returns
#  use SPY as proxy for S&P 500; SPY should be first symbol in assets
#
  assets <- c("SPY", "AMZN", "XOM")   
  getSymbols( assets, from = "2017-01-01", auto.assign = TRUE)

  asset_prices <- xts()
  asset_prices <- Reduce(f=function(x,y) {y_sym=eval(as.name(y));  merge(x,y_sym[,paste0(y,".Adjusted")])},
                         x = assets, init=asset_prices) 
  asset_returns <- diff.xts(asset_prices, arithmetic = FALSE, na.pad=FALSE)-1

  market_return <- asset_returns$SPY.Adjusted
  stock_returns <- asset_returns[,-1] 

#
#  calculate rolling beta with a 40 trading-day window using CAPM.beta.roll
#  For this amount of data and calculating daily betas (by = 1), calculation should take 5-10 seconds
#
  width_cor = 40
  CAPM.beta_roll <- rollapply(data=stock_returns, FUN=CAPM.beta, Rb= market_return, Rf = 2.5/252, 
                       width = width_cor, by = 1, align = "right", by.column=TRUE)

#
#  calculate rolling beta with a 40 trading-day window by calculating the covariance matrix and taking ratio of two elements
#  For this amount of data and calculating daily betas (by = 1), calculation should be very quick
#
  CovVar <- function(Ra, Rb) {R = merge.xts(Rb, Ra, join="inner"); cv=cov(x=R);  
                               cv[1,-1]/cv[1,1,drop=TRUE]}
  CovVar_roll <- rollapplyr(data=stock_returns, width=width_cor,
                            FUN= CovVar,  Rb = market_return, by.column=FALSE)

#
#  since rollapply does not apply the window to Rb, it is done in CovVar for each time window
#  CovVar1 is a faster version which passes the merged market and stock return to cov directly
#  Its single argument R must be the merged data matrix R
#
  CovVar1 <- function(R){  cv=cov(x=R); cv[-1,1]/cv[1,1]}
  CovVar1_roll <- rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
                             FUN= CovVar1,  by.column=FALSE)

  #
  #  CovVar2 is a faster version which passes the merged market and stock return to cov directly and 
  #  calculates the covariances only between the market returns and stock_returns.  For a small number of stocks,
  #  this is less efficient than calculating the entire covariance for a single matrix as in CovVar1 but it should become more 
  #  efficient for a larger number of stocks.
  #  Its single argument R must be the merged data matrix R
  #
  CovVar2 <- function(R){  cv = cov(R[,1], R );  cv[,-1]/cv[1,1] }
  CovVar2_roll <- rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
                             FUN= CovVar2,  by.column=FALSE)

#
# Compare to verify that results are the same 
#
  print(tail(merge(CAPM.beta_roll, CovVar_roll, CovVar1_roll, CovVar2_roll )))
#
#  Compare execution times for four above methods and third method using BetaCovariance function from PerformanceAnalytics
#  This should take 25-35 seconds to run
#

  elapsed_times <- microbenchmark(
                  CAPM.beta_roll = rollapplyr(data=stock_returns, width=width_cor,
                                              FUN= CAPM.beta, Rb=market_return,by.column=FALSE),
                  BetaCoVar_roll = rollapplyr(data=stock_returns, width=width_cor,
                                               FUN= BetaCoVariance, Rb=market_return,by.column=FALSE),
                  CovVar_roll = rollapplyr(data=stock_returns, width=width_cor,
                                           FUN= CovVar,  Rb = market_return, by.column=FALSE),
                  CovVar1_roll = rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
                                             FUN= CovVar1,  by.column=FALSE),
                  CovVar2_roll = rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
                                             FUN= CovVar2,  by.column=FALSE),
                   times = 3)

# 
#  Direct calculation using covariance matrix, CovVar, is 50 - 100 times faster than PerformanceAnalytics functions 
#
  print(elapsed_times)

Время выполнения:

Unit: milliseconds
           expr        min         lq       mean     median         uq        max neval
 CAPM.beta_roll 3007.34309 3009.92618 3016.57905 3012.50928 3021.19703 3029.88477     3
 BetaCoVar_roll 3453.83531 3471.70954 3478.91433 3489.58377 3491.45383 3493.32390     3
    CovVar_roll   69.19571   69.57012   69.83189   69.94453   70.14999   70.35544     3
   CovVar1_roll   38.72437   39.17021   39.33052   39.61605   39.63359   39.65113     3
   CovVar2_roll   60.75020   61.08255   61.36130   61.41490   61.66684   61.91878     3 

CovVar1 является самым быстрым, поскольку, по крайней мере для небольшого числа измерений, R вычисляет ковариационную матрицу гораздо эффективнее для одного матричного входа, чем для входа двух матриц, где он должен выровнять матрицы. Для большего числа измерений CovVar2 должен быть быстрее.

...