На самом деле, функция PerformanceAnalytics
даст те же результаты, но это займет больше времени. В приведенном ниже коде используются образцы данных за 2017-01-01 гг., А теперь AMZN и XOM в качестве акций, а SPY в качестве прокси для рыночной доходности. В скользящих расчетах используется окно из 40 торговых дней. Скользящее бета-значение рассчитывается с использованием функций CAPM.beta
и BetaCoVariance
из PerformanceAnalytics
и тремя методами, которые непосредственно вычисляют ковариационную матрицу и затем принимают отношение парных ковариаций к рыночной дисперсии. Результаты методов отображаются, чтобы показать, что они одинаковы. microbenchmark
из пакета microbenchmark
используется для измерения времени выполнения для всех методов. Прямые вычисления на один-два порядка быстрее.
library(xts)
library(quantmod)
library(PerformanceAnalytics)
library(microbenchmark)
#
# get price time histories and calculate returns
# use SPY as proxy for S&P 500; SPY should be first symbol in assets
#
assets <- c("SPY", "AMZN", "XOM")
getSymbols( assets, from = "2017-01-01", auto.assign = TRUE)
asset_prices <- xts()
asset_prices <- Reduce(f=function(x,y) {y_sym=eval(as.name(y)); merge(x,y_sym[,paste0(y,".Adjusted")])},
x = assets, init=asset_prices)
asset_returns <- diff.xts(asset_prices, arithmetic = FALSE, na.pad=FALSE)-1
market_return <- asset_returns$SPY.Adjusted
stock_returns <- asset_returns[,-1]
#
# calculate rolling beta with a 40 trading-day window using CAPM.beta.roll
# For this amount of data and calculating daily betas (by = 1), calculation should take 5-10 seconds
#
width_cor = 40
CAPM.beta_roll <- rollapply(data=stock_returns, FUN=CAPM.beta, Rb= market_return, Rf = 2.5/252,
width = width_cor, by = 1, align = "right", by.column=TRUE)
#
# calculate rolling beta with a 40 trading-day window by calculating the covariance matrix and taking ratio of two elements
# For this amount of data and calculating daily betas (by = 1), calculation should be very quick
#
CovVar <- function(Ra, Rb) {R = merge.xts(Rb, Ra, join="inner"); cv=cov(x=R);
cv[1,-1]/cv[1,1,drop=TRUE]}
CovVar_roll <- rollapplyr(data=stock_returns, width=width_cor,
FUN= CovVar, Rb = market_return, by.column=FALSE)
#
# since rollapply does not apply the window to Rb, it is done in CovVar for each time window
# CovVar1 is a faster version which passes the merged market and stock return to cov directly
# Its single argument R must be the merged data matrix R
#
CovVar1 <- function(R){ cv=cov(x=R); cv[-1,1]/cv[1,1]}
CovVar1_roll <- rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
FUN= CovVar1, by.column=FALSE)
#
# CovVar2 is a faster version which passes the merged market and stock return to cov directly and
# calculates the covariances only between the market returns and stock_returns. For a small number of stocks,
# this is less efficient than calculating the entire covariance for a single matrix as in CovVar1 but it should become more
# efficient for a larger number of stocks.
# Its single argument R must be the merged data matrix R
#
CovVar2 <- function(R){ cv = cov(R[,1], R ); cv[,-1]/cv[1,1] }
CovVar2_roll <- rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
FUN= CovVar2, by.column=FALSE)
#
# Compare to verify that results are the same
#
print(tail(merge(CAPM.beta_roll, CovVar_roll, CovVar1_roll, CovVar2_roll )))
#
# Compare execution times for four above methods and third method using BetaCovariance function from PerformanceAnalytics
# This should take 25-35 seconds to run
#
elapsed_times <- microbenchmark(
CAPM.beta_roll = rollapplyr(data=stock_returns, width=width_cor,
FUN= CAPM.beta, Rb=market_return,by.column=FALSE),
BetaCoVar_roll = rollapplyr(data=stock_returns, width=width_cor,
FUN= BetaCoVariance, Rb=market_return,by.column=FALSE),
CovVar_roll = rollapplyr(data=stock_returns, width=width_cor,
FUN= CovVar, Rb = market_return, by.column=FALSE),
CovVar1_roll = rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
FUN= CovVar1, by.column=FALSE),
CovVar2_roll = rollapplyr(data=merge(market_return, stock_returns), width=width_cor,
FUN= CovVar2, by.column=FALSE),
times = 3)
#
# Direct calculation using covariance matrix, CovVar, is 50 - 100 times faster than PerformanceAnalytics functions
#
print(elapsed_times)
Время выполнения:
Unit: milliseconds
expr min lq mean median uq max neval
CAPM.beta_roll 3007.34309 3009.92618 3016.57905 3012.50928 3021.19703 3029.88477 3
BetaCoVar_roll 3453.83531 3471.70954 3478.91433 3489.58377 3491.45383 3493.32390 3
CovVar_roll 69.19571 69.57012 69.83189 69.94453 70.14999 70.35544 3
CovVar1_roll 38.72437 39.17021 39.33052 39.61605 39.63359 39.65113 3
CovVar2_roll 60.75020 61.08255 61.36130 61.41490 61.66684 61.91878 3
CovVar1 является самым быстрым, поскольку, по крайней мере для небольшого числа измерений, R вычисляет ковариационную матрицу гораздо эффективнее для одного матричного входа, чем для входа двух матриц, где он должен выровнять матрицы. Для большего числа измерений CovVar2 должен быть быстрее.