Как я могу использовать «режим тройного чередования» в stm32f446? - PullRequest
0 голосов
/ 01 ноября 2018

Я хочу добиться высокой частоты дискретизации в stm32f446, поэтому я обнаружил, что могу утроить частоту дискретизации, используя «режим тройного чередования» и DMA. Я думал, что могу легко это сделать, определив каждый из ADC1, ADC2 и ADC3 как режим непрерывного преобразования с памятью прямого доступа, но он не работает. я на правильном пути?

Я использую trueStudio и STM32CubeMX

#include "main.h"
#include "stm32f4xx_hal.h"


ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;
DMA_HandleTypeDef hdma_adc3;

UART_HandleTypeDef huart2;


void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC3_Init(void);
static void MX_ADC2_Init(void);

uint32_t adc_value1[333], adc_value2[333], adc_value3[333], adc_val1[333], adc_val2[333], adc_val3[333], adc_buf1[333], adc_buf2[333], adc_buf3[333];

char message1[];
char message2[];
char message3[];

char schar[]="<";
char echar[]=">";


void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){
    for(int i = 0; i<333; i++){
        adc_val1[i] = adc_buf1[i];
        adc_val2[i] = adc_buf2[i];
        adc_val3[i] = adc_buf3[i];
    }
}


int main(void)
{

  HAL_Init();

  SystemClock_Config();

  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_USART2_UART_Init();
  MX_ADC3_Init();
  MX_ADC2_Init();

  HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t *)adc_buf1, 333);
  HAL_ADCEx_MultiModeStart_DMA(&hadc2, (uint32_t *)adc_buf2, 333);
  HAL_ADCEx_MultiModeStart_DMA(&hadc3, (uint32_t *)adc_buf3, 333);

  while (1)
  {


      for(int i=0; i<333; i++){
          adc_value1[i] = adc_val1[i];
          adc_value2[i] = adc_val2[i];
          adc_value3[i] = adc_val3[i];
      }
 // transmit data through UART to arduino
      for(int j=0; j<333; j++){
          //adc_value[j] = adc_val[j];
          sprintf(message1, "%d", adc_value1[j]);
          sprintf(message2, "%d", adc_value2[j]);
          sprintf(message3, "%d", adc_value3[j]);
          HAL_UART_Transmit(&huart2, (uint8_t*)schar, 1, 10);
          HAL_UART_Transmit(&huart2, (uint16_t*)message1, strlen(message1), 10);
          HAL_UART_Transmit(&huart2, (uint16_t*)message2, strlen(message2), 10);
          HAL_UART_Transmit(&huart2, (uint16_t*)message3, strlen(message3), 10);
          HAL_UART_Transmit(&huart2, (uint8_t*)echar, 1, 10);
          HAL_Delay(50);
      }


  }


}

void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __HAL_RCC_PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 144;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

static void MX_ADC1_Init(void)
{

  ADC_MultiModeTypeDef multimode;
  ADC_ChannelConfTypeDef sConfig;

  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 4;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  multimode.Mode = ADC_TRIPLEMODE_INTERL;
  multimode.DMAAccessMode = ADC_DMAACCESSMODE_2;
  multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_6CYCLES;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

static void MX_ADC2_Init(void)
{

  ADC_ChannelConfTypeDef sConfig;

  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.ScanConvMode = ENABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrOfConversion = 4;
  hadc2.Init.DMAContinuousRequests = ENABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

static void MX_ADC3_Init(void)
{

  ADC_ChannelConfTypeDef sConfig;

  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc3.Init.Resolution = ADC_RESOLUTION_12B;
  hadc3.Init.ScanConvMode = ENABLE;
  hadc3.Init.ContinuousConvMode = ENABLE;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc3.Init.NbrOfConversion = 4;
  hadc3.Init.DMAContinuousRequests = ENABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfig.Channel = ADC_CHANNEL_10;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

static void MX_USART2_UART_Init(void)
{

  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

static void MX_DMA_Init(void) 
{

  __HAL_RCC_DMA2_CLK_ENABLE();

  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

  HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);

  HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);

}

static void MX_GPIO_Init(void)
{

  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

}

void _Error_Handler(char *file, int line)
{

  while(1)
  {
  }

}

#ifdef  USE_FULL_ASSERT

void assert_failed(uint8_t* file, uint32_t line)
{ 

}
#endif 
...