Разложи тс с нечетным начальным месяцем - PullRequest
0 голосов
/ 02 июля 2018

в данный момент я пытаюсь получить сезонную составляющую моих данных. Для этого я создаю ts через tk_ts из списка дат и значений. К сожалению, один из моих наборов данных начинается с 2011-07-01 и продолжается до 2018-05-01 (с отсутствующими данными, которые я уже заполнил pad из padr lib).

Поскольку ts с frequency = 12 должно начинаться с первого января, я не могу смоделировать эти данные с ts. Поэтому я попытался создать xts из моих данных и преобразовать его в ts, но либо я не могу заставить частоту работать, либо данные отключены.

Вот мой MWE:

library(tidyquant)
library(timetk)

raw_data <- tibble(Date = c(as.Date("2011-07-01"), as.Date("2011-08-01"),
                   as.Date("2011-09-01"), as.Date("2011-10-01"),
                   as.Date("2011-11-01"), as.Date("2011-12-01"),
                   as.Date("2012-01-01"), as.Date("2012-02-01")),
                  Value = c(1,4,1,4,1,4,1,4))
                  # And so on, till 2018-05-01 and with reasonable values

tk_ts(raw_data, select = Value, start = 2011, frequency = 12)
# Leads to:
# 
#      Jan Feb Mar Apr May Jun Jul Aug
# 2011   1   4   1   4   1   4   1   4
#
# which is bad since my first date is 2011-07-01 not 2011-01-01.

xts_data <- xts(raw_data$Value, order.by = raw_data$Date, frequency = 12)
# xts_data Leads to, which is fine:
# 
# [,1]
# 2011-07-01    1
# 2011-08-01    4
# 2011-09-01    1
# 2011-10-01    4
# 2011-11-01    1
# 2011-12-01    4
# 2012-01-01    1
# 2012-02-01    4

as.ts(xts_data, start = start(xts_data), end = end(xts_data))
# Leads to:
# 
# Time Series:
# Start = 15156 
# End = 15371 
# Frequency = 1 
# [1] 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
# [52] 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
# [103] 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
# [154] 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
# [205] 1 4 1 4 1 4 1 4 1 4 1 4
#
# Which is totaly bad since there are more than the original 8 values.

as.ts(xts_data, start = start(xts_data))
# Leads to:
# 
# Time Series:
#   Start = 15156 
# End = 15163 
# Frequency = 1 
# [1] 1 4 1 4 1 4 1 4
#
# Which is bad since the Frequency is off
#  and I need it to be ok for the decompose.

as.ts(xts_data, start = start(xts_data), end = end(xts_data), frequency = 12)
# Leads to:
# 
# Error in ts(coredata(x), frequency = frequency(x), ...) : 
#   formal argument "frequency" matched by multiple actual arguments

attr(xts_data, 'frequency') <- 12
as.ts(xts_data, start = start(xts_data))
# Leads to:
# 
# Jan Feb Mar Apr May Jun Jul Aug
# 15156   1   4   1   4   1   4   1   4
#
# Which is as bad as the first example

Так, как я могу произвести декомпозицию (чтобы получить сезонную составляющую) данных, которые не начинаются с первого января?

1 Ответ

0 голосов
/ 02 июля 2018

Вы можете попробовать простое добавление к аргументу start, указав также номер месяца (в данном случае 07).

raw_data <- tibble(Date = c(as.Date("2011-07-01"), as.Date("2011-08-01"),
                            as.Date("2011-09-01"), as.Date("2011-10-01"),
                            as.Date("2011-11-01"), as.Date("2011-12-01"),
                            as.Date("2012-01-01"), as.Date("2012-02-01")),
                   Value = c(1,4,1,4,1,4,1,4))
# And so on, till 2018-05-01 and with reasonable values

tk_ts(raw_data, select = Value, start = c(2011,07), frequency = 12)

Это приводит к следующему выводу:

tk_ts(raw_data, select = Value, start = c(2011,07), frequency = 12)
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2011                           1   4   1   4   1   4
2012   1   4 

Надеюсь, что это поможет с тем, что вы пытаетесь достичь в последующих шагах.

...