Вот несколько примеров использования tf.scatter_add и tf.scatter_sub
>>> t1 = tf.Variable(tf.ones([2,3,4],tf.int32))
>>> t2 = tf.Variable(tf.zeros([2,3,4],tf.int32))
>>> init = tf.global_variables_initializer()
>>> sess.run(init)
>>> t1.eval()
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int32)
>>> t2.eval()
array([[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]], dtype=int32)
>>> t3 = tf.scatter_add(t1,[0],[[[2,2,2,2],[2,2,2,2],[2,2,2,2]]])
>>> sess.run(t3)
array([[[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int32)
>>>t4 = tf.scatter_sub(t1,[0,0,0],[t1[1],t1[1],t1[1]])
Ниже приведен еще один пример, который можно найти по адресу https://blog.csdn.net/efforever/article/details/77073103
Поскольку в Интернете можно найти несколько примеров, иллюстрирующих scatter_xxx, я вставлю его ниже для справки.
import tensorflow as tf
import numpy as np
with tf.Session() as sess1:
c = tf.Variable([[1,2,0],[2,3,4]], dtype=tf.float32, name='biases')
cc = tf.Variable([[1,2,0],[2,3,4]], dtype=tf.float32, name='biases1')
ccc = tf.Variable([0,1], dtype=tf.int32, name='biases2')
#对应label的centers-diff[0--]
centers = tf.scatter_sub(c,ccc,cc)
#centers = tf.scatter_sub(c,[0,1],cc)
#centers = tf.scatter_sub(c,[0,1],[[1,2,0],[2,3,4]])
#centers = tf.scatter_sub(c,[0,0,0],[[1,2,0],[2,3,4],[1,1,1]])
#即c[0]-[1,2,0] \ c[0]-[2,3,4]\ c[0]-[1,1,1],updates要减完:indices与updates元素个数相同
a = tf.Variable(initial_value=[[0, 0, 0, 0],[0, 0, 0, 0]])
b = tf.scatter_update(a, [0, 1], [[1, 1, 0, 0], [1, 0, 4, 0]])
#b = tf.scatter_update(a, [0, 1,0], [[1, 1, 0, 0], [1, 0, 4, 0],[1, 1, 0, 1]])
init = tf.global_variables_initializer()
sess1.run(init)
print(sess1.run(centers))
print(sess1.run(b))
[[ 0. 0. 0.]
[ 0. 0. 0.]]
[[1 1 0 0]
[1 0 4 0]]
[[-3. -4. -5.]
[ 2. 3. 4.]]
[[1 1 0 1]
[1 0 4 0]]