Импорт классов из сценария анализа настроений в скрипт chatbot. Затем делайте необходимые вещи в соответствии с вашими требованиями. Например. Я изменил ваш скрипт chatbot:
from chatterbot import ChatBot
from chatterbot.trainers import ListTrainer
from sentiment_analysis import Splitter, POSTagger, DictionaryTagger # import all the classes from sentiment_analysis
import os
bot = ChatBot('Bot')
bot.set_trainer(ListTrainer)
# for files in os.listdir('C:/Users/username\Desktop\chatterbot\chatterbot_corpus\data/english/'):
# data = open('C:/Users/username\Desktop\chatterbot\chatterbot_corpus\data/english/' + files, 'r').readlines()
data = [
"My name is Tony",
"that's a good name",
"Thank you",
"How you doing?",
"I am Fine. What about you?",
"I am also fine. Thanks for asking."]
bot.train(data)
# I included 3 functions from sentiment_analysis here for ease of loading. Alternatively you can create a class for them in sentiment_analysis.py and import here.
def value_of(sentiment):
if sentiment == 'positive': return 1
if sentiment == 'negative': return -1
return 0
def sentence_score(sentence_tokens, previous_token, acum_score):
if not sentence_tokens:
return acum_score
else:
current_token = sentence_tokens[0]
tags = current_token[2]
token_score = sum([value_of(tag) for tag in tags])
if previous_token is not None:
previous_tags = previous_token[2]
if 'inc' in previous_tags:
token_score *= 2.0
elif 'dec' in previous_tags:
token_score /= 2.0
elif 'inv' in previous_tags:
token_score *= -1.0
return sentence_score(sentence_tokens[1:], current_token, acum_score + token_score)
def sentiment_score(review):
return sum([sentence_score(sentence, None, 0.0) for sentence in review])
# create instances of all classes
splitter = Splitter()
postagger = POSTagger()
dicttagger = DictionaryTagger([ 'dicts/positive.yml', 'dicts/negative.yml',
'dicts/inc.yml', 'dicts/dec.yml', 'dicts/inv.yml'])
print("ChatBot is Ready...")
print("ChatBot : Welcome to my world! What is your name?")
message = input("you: ")
print("\n")
while True:
if message.strip() != 'Bye'.lower():
reply = bot.get_response(message)
# process the text
splitted_sentences = splitter.split(message)
pos_tagged_sentences = postagger.pos_tag(splitted_sentences)
dict_tagged_sentences = dicttagger.tag(pos_tagged_sentences)
# find sentiment score
score = sentiment_score(dict_tagged_sentences)
if (score >= 1):
print('User Reply: Positive')
else:
print('User Reply: Negative')
print("Sentiment score :",score)
print('ChatBot:',reply)
if message.strip() == 'Bye'.lower():
print('ChatBot: Bye')
break
message = input("you: ")
print("\n")
Дайте мне знать, когда вы получите ошибки.