Количество подмножеств может быть экспоненциальным (максимум 2 ^ k), поэтому нет ничего плохого в том, чтобы пройти все возможные независимые подмножества с помощью рекурсии. Я использовал линейный поиск следующего возможного интервала, но стоит использовать бинарный поиск.
def nonovl(l, idx, right, ll):
if idx == len(l):
if ll:
print(ll)
return
#find next non-overlapping interval without using l[idx]
next = idx + 1
while next < len(l) and right >= l[next][0]:
next += 1
nonovl(l, next, right, ll)
#find next non-overlapping interval after using l[idx]
next = idx + 1
right = l[idx][1]
while next < len(l) and right >= l[next][0]:
next += 1
nonovl(l, next, right, ll + str(l[idx]))
l=[(1,8),(2,13),(9,18),(15,30),(20,35)]
l.sort()
nonovl(l, 0, -1, "")
(20, 35)
(15, 30)
(9, 18)
(9, 18)(20, 35)
(2, 13)
(2, 13)(20, 35)
(2, 13)(15, 30)
(1, 8)
(1, 8)(20, 35)
(1, 8)(15, 30)
(1, 8)(9, 18)
(1, 8)(9, 18)(20, 35)