У меня есть файл CSV, который был импортирован в виде кадра данных с помощью следующих кодов:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.csv("name of file.csv", inferSchema = True, header = True)
df.show()
вывод
+-----+------+-----+
|col1 | col2 | col3|
+-----+------+-----+
| A | 2 | 4 |
+-----+------+-----+
| A | 4 | 5 |
+-----+------+-----+
| A | 7 | 7 |
+-----+------+-----+
| A | 3 | 8 |
+-----+------+-----+
| A | 7 | 3 |
+-----+------+-----+
| B | 8 | 9 |
+-----+------+-----+
| B | 10 | 10 |
+-----+------+-----+
| B | 8 | 9 |
+-----+------+-----+
| B | 20 | 15 |
+-----+------+-----+
Я хочу создать еще один col4
, который содержит col2[n+3]/col2-1
для каждой группы в col1
отдельно.
Вывод должен быть
+-----+------+-----+-----+
|col1 | col2 | col3| col4|
+-----+------+-----+-----+
| A | 2 | 4 | 0.5| #(3/2-1)
+-----+------+-----+-----+
| A | 4 | 5 | 0.75| #(7/4-1)
+-----+------+-----+-----+
| A | 7 | 7 | NA |
+-----+------+-----+-----+
| A | 3 | 8 | NA |
+-----+------+-----+-----+
| A | 7 | 3 | NA |
+-----+------+-----+-----+
| B | 8 | 9 | 1.5 |
+-----+------+-----+-----+
| B | 10 | 10 | NA |
+-----+------+-----+-----+
| B | 8 | 9 | NA |
+-----+------+-----+-----+
| B | 20 | 15 | NA |
+-----+------+-----+-----+
Я знаю, как это сделать в пандах, но я не уверен, как сделать какое-то вычисление для сгруппированного столбца в PySpark.
На данный момент моя версия PySpark - 2.4
.