Не допустить, чтобы моя оперативная память достигла 100% - PullRequest
0 голосов
/ 05 мая 2018

У меня есть очень простой скрипт на python, который читает файл CSV и сортирует строки по временным меткам. Однако файл достаточно велик (16 ГБ), чтобы его чтение полностью использовало оперативную память. Когда он достигает 100% (то есть 64 ГБ ОЗУ), моя система полностью зависает, и я вынужден перезагрузить компьютер.

Вот код:

import pandas as pd
from time import time

filename = 'AKER_OB.csv'

start_ = time()
file_ = pd.read_csv(filename)
end_ = time()
duration = end_ - start_
print("The duration to load that file : {}".format(duration))

file_.to_datetime(df['TimeStamps'], format="%Y-%m-%d %H:%M:%S").sort_values()

Глава AKER_OB.csv:

TimeStamp,Bid1,BidSize1,Bid2,BidSize2,Bid3,BidSize3,Bid4,BidSize4,Bid5,BidSize5,Bid6,BidSize6,Bid7,BidSize7,Bid8,BidSize8,Bid9,BidSize9,Bid10,BidSize10,Bid11,BidSize11,Bid12,BidSize12,Bid13,BidSize13,Bid14,BidSize14,Bid15,BidSize15,Bid16,BidSize16,Bid17,BidSize17,Bid18,BidSize18,Bid19,BidSize19,Bid20,BidSize20,Ask1,AskSize1,Ask2,AskSize2,Ask3,AskSize3,Ask4,AskSize4,Ask5,AskSize5,Ask6,AskSize6,Ask7,AskSize7,Ask8,AskSize8,Ask9,AskSize9,Ask10,AskSize10,Ask11,AskSize11,Ask12,AskSize12,Ask13,AskSize13,Ask14,AskSize14,Ask15,AskSize15,Ask16,AskSize16,Ask17,AskSize17,Ask18,AskSize18,Ask19,AskSize19,Ask20,AskSize20
2016-10-08 00:00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:01,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:02,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:03,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:04,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:06,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2016-10-08 00:00:08,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Как правильно решить эту проблему? Полный ответ с кодом фрагмента будет оценен.

Ответы [ 2 ]

0 голосов
/ 05 мая 2018

По сути, вам необходимо реализовать собственную сортировку нехватки памяти.

  1. Разделите ваш файл на две или более частей с помощью Pandas CSV chunker , отсортируйте каждый фрагмент (по одной части за раз!), Сохраните его в отдельный файл CSV и освободите память с помощью del.

  2. Объедините отсортированные файлы, открыв все сохраненные предварительно отсортированные файлы с помощью блоков CSV, при необходимости объединяя строки из фрагментов и добавляя отсортированные строки в выходной файл.

0 голосов
/ 05 мая 2018

Просто разделите чтение файла на куски. A аналогичный чехол .

Также рассмотрите возможность добавления раздела подкачки или файла в вашу ОС, это поможет решить проблему нехватки ОЗУ для других ситуаций.

...