ValueError: pos_label = 1 не является допустимой меткой: массив (['neg', 'pos'], dtype = '<U3') - PullRequest
0 голосов
/ 06 мая 2018

Я получаю эту ошибку, пытаясь получить оценку отзыва.

X_test = test_pos_vec + test_neg_vec
Y_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)

recall_average = recall_score(Y_test, y_predict, average="binary")

print(recall_average)

Это даст мне:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if pos_label not in present_labels:
Traceback (most recent call last):
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
    main()
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
    recall_average = recall_score(Y_test, y_predict, average="binary")
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
    sample_weight=sample_weight)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support
    (pos_label, present_labels))
ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],
      dtype='<U3')

Я пытался преобразовать 'pos' в 1 и 'neg' в 0 следующим образом:

for i in range(len(Y_test)):
     if 'neg' in Y_test[i]:
         Y_test[i] = 0
     else:
         Y_test[i] = 1

Но это дает мне еще одну ошибку:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  score = y_true == y_pred
Traceback (most recent call last):
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
    main()
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
    recall_average = recall_score(Y_test, y_predict, average="binary")
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
    sample_weight=sample_weight)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support
    present_labels = unique_labels(y_true, y_pred)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels
    raise ValueError("Mix of label input types (string and number)")
ValueError: Mix of label input types (string and number)

Я пытаюсь получить метрики: точность, точность, отзыв, f_measure. С average='weighted' я получаю тот же результат: точность = отзыв. Я думаю, что это не правильно, поэтому я изменил average='binary', но у меня есть эти ошибки. Есть идеи?

1 Ответ

0 голосов
/ 24 октября 2018
recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")

Используйте "neg" или "pos" как pos_label, и эта ошибка не возникнет снова.

...