Я запустил этот пример и получил следующую ошибку при попытке сохранить модель.
import tensorflow as tf
import h5py
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=2)
val_loss, val_acc = model.evaluate(x_test, y_test)
print(val_loss, val_acc)
model.save('model.h5')
new_model = tf.keras.models.load_model('model.h5')
Я получаю эту ошибку:
Traceback (most recent call last):
File "/home/zneic/PycharmProjects/test/venv/test.py", line 23, in <module>
model.save('model.h5')
File "/home/zneic/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py", line 1359, in save
'Currently `save` requires model to be a graph network. Consider '
NotImplementedError: Currently `save` requires model to be a graph network. Consider using `save_weights`, in order to save the weights of the model.