Я очень новичок в tenorflow и особенно в 2.0, так как примеров этого API недостаточно, но он кажется гораздо более удобным, чем 1.x. До сих пор мне удавалось обучить линейную модель с использованием API tf.estimator, а затемудалось сохранить его с помощью tf.estimator.exporter.
После этого я хотел загрузить эту модель с помощью API tf.saved_model, и я думаю, что мне это удалось, но у меня есть некоторые сомнения в моей процедуре, поэтому вотБеглый взгляд на мой код:
, поэтому у меня есть массив функций, созданных с использованием API tf.feature_column, и он выглядит так:
feature_columns =
[NumericColumn(key='geoaccuracy', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
NumericColumn(key='longitude', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
NumericColumn(key='latitude', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
NumericColumn(key='bidfloor', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
VocabularyListCategoricalColumn(key='adid', vocabulary_list=('115', '124', '139', '122', '121', '146', '113', '103', '123', '104', '147', '114', '149', '148'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
VocabularyListCategoricalColumn(key='campaignid', vocabulary_list=('36', '31', '33', '28'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
VocabularyListCategoricalColumn(key='exchangeid', vocabulary_list=('1241', '823', '1240', '1238'), dtype=tf.string, default_value=-1, num_oov_buckets=0),
...]
, после чего я определяю оценщик, используя свою функциюстолбцы массив таким образом, и тренировать его. пока здесь, нет проблем.
linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns)
после тренировки моей модели я хотел сохранить ее, поэтому здесь начинаются сомнения, вот как я поступил, но не уверен, что это правильный путь:
serving_input_parse = tf.feature_column.make_parse_example_spec(feature_columns=feature_columns)
""" view of the variable : serving_input_parse =
{'adid': VarLenFeature(dtype=tf.string),
'at': VarLenFeature(dtype=tf.string),
'basegenres': VarLenFeature(dtype=tf.string),
'bestkw': VarLenFeature(dtype=tf.string),
'besttopic': VarLenFeature(dtype=tf.string),
'bidfloor': FixedLenFeature(shape=(1,), dtype=tf.float32, default_value=None),
'browserid': VarLenFeature(dtype=tf.string),
'browserlanguage': VarLenFeature(dtype=tf.string)
...} """
# exporting the model :
linear_est.export_saved_model(export_dir_base='./saved',
serving_input_receiver_fn=tf.estimator.export.build_parsing_serving_input_receiver_fn(serving_input_receiver_fn),
as_text=True)
теперь я попытался загрузить его, и у меня нет представления о том, как использовать загруженную модель для вызова прогноза для нее, используя необработанные данные из pandas dataframe, например
loaded = tf.saved_model.load('saved/1573144361/')
Еще одна вещь, которую я пыталсявзгляните на сигнатуру модели, но я не могу понять, что происходит с моими входными формами
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['classification']:
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_example_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 2)
name: head/Tile:0
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: head/predictions/probabilities:0
Method name is: tensorflow/serving/classify
signature_def['predict']:
The given SavedModel SignatureDef contains the following input(s):
inputs['examples'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_example_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['all_class_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 2)
name: head/predictions/Tile:0
outputs['all_classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 2)
name: head/predictions/Tile_1:0
outputs['class_ids'] tensor_info:
dtype: DT_INT64
shape: (-1, 1)
name: head/predictions/ExpandDims:0
outputs['classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 1)
name: head/predictions/str_classes:0
outputs['logistic'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: head/predictions/logistic:0
outputs['logits'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: linear/linear_model/linear/linear_model/linear/linear_model/weighted_sum:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: head/predictions/probabilities:0
Method name is: tensorflow/serving/predict
signature_def['regression']:
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_example_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['outputs'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: head/predictions/logistic:0
Method name is: tensorflow/serving/regress
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_example_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 2)
name: head/Tile:0
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: head/predictions/probabilities:0
Method name is: tensorflow/serving/classify