Одинаковая (?) Архитектура нейронной сети в Tensorflow и Keras дает разную точность для одних и тех же данных - PullRequest
0 голосов
/ 08 мая 2018

Я реализовал простую нейронную сеть MLP в Tensorflow с использованием набора данных MNIST, после чего я попытался реализовать ту же сеть с использованием Keras, надеясь получить те же результаты. Модель с тензорным потоком достигает точности тестирования около 98%, в то время как модель Keras достигает только 96% (есть небольшая разница из-за случайного высева, но модель Keras всегда работает примерно на 2% хуже).

Чтобы выяснить, что именно вызывает это, я использовал точно такой же оптимизатор , функция активации , функция потерь , метрика , инициализаторы веса и смещения и заполнители ввода и вывода в обеих моделях. Тем не менее, разница в производительности на 2% все еще сохраняется (раньше я использовал их собственные реализации Keras, но результат был тем же).

Ниже приведен код обеих реализаций:

import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets import mnist
from datetime import datetime
from numpy import sqrt

# Data
mnist = mnist.read_data_sets('data', one_hot=True)
X_train = mnist.train.images
Y_train = mnist.train.labels
X_test = mnist.test.images
Y_test = mnist.test.labels

# Data meta
in_shape = X_train.shape[1]
out_shape = Y_train.shape[1]
n_train = X_train.shape[0]
n_test = X_test.shape[0]

# Hyperparams
n_neurons = 256
dropout_prob = 0.7
lr = 0.001
training_epochs = 30
batch_size = 100
n_batches = int(n_train / batch_size)

def get_network_utils():
    input_placeholder = tf.keras.layers.Input(shape=(in_shape, ))
    output_placeholder = tf.placeholder(tf.float32, [None, out_shape], name="output")
    dropout_ph = tf.placeholder_with_default(1.0, shape=())
    optimizer = tf.train.AdamOptimizer(learning_rate=lr, name='Trainer')
    activation = tf.nn.relu

    def loss(y_true, y_pred):
        return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred))

    def accuracy(y_true, y_pred):
        correct = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_pred, 1))
        return tf.reduce_mean(tf.cast(correct, tf.float32))

    def weight_initializer(shape, dtype=None, partition_info=None):
        init_range = sqrt(6.0 / (shape[0] + shape[1]))
        return tf.get_variable('weights', shape=shape, dtype=dtype,
                               initializer=tf.random_uniform_initializer(-init_range, init_range))

    def bias_initializer(shape, dtype=None, partition_info=None):
        return tf.Variable(name='bias', initial_value=tf.random_normal(shape))

    return (input_placeholder, output_placeholder, dropout_ph, optimizer, activation, loss, accuracy,
            weight_initializer, bias_initializer)

def keras_train():
    input_placeholder, output_placeholder, _, optimizer, activation, loss, accuracy, weight_initializer, \
    bias_initializer = get_network_utils()

    def make_layer(name, units, input_shape, activation):
        return tf.keras.layers.Dense(units=units, input_shape=input_shape, kernel_initializer=weight_initializer,
                                     bias_initializer=bias_initializer, activation=activation, name=name)

    visible_layer = make_layer('VisibleLayer', n_neurons, (in_shape,), activation)(input_placeholder)
    dropout = tf.keras.layers.Dropout(dropout_prob)(visible_layer)
    hidden_layer_1 = make_layer('HiddenLayer1', n_neurons, (n_neurons,), activation)(dropout)
    dropout = tf.keras.layers.Dropout(dropout_prob)(hidden_layer_1)
    hidden_layer_2 = make_layer('HiddenLayer2', n_neurons, (n_neurons,), activation)(dropout)
    dropout = tf.keras.layers.Dropout(dropout_prob)(hidden_layer_2)
    hidden_layer_3 = make_layer('HiddenLayer3', n_neurons, (n_neurons,), activation)(dropout)
    dropout = tf.keras.layers.Dropout(dropout_prob)(hidden_layer_3)
    output_layer = make_layer('OutputLayer', out_shape, (n_neurons,), 'linear')(dropout)
    model = tf.keras.Model(input_placeholder, output_layer)

    # Compile
    model.compile(loss=loss, optimizer=optimizer, metrics=[accuracy], target_tensors=[output_placeholder])

    # Tensorboard graph
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='/tmp/TensorflowLogs/kr_%s'
                                                                  % datetime.now().strftime('%Y%m%d_%H%M%S'),
                                                          write_graph=True)

    # Train
    def batch_generator():
        while True:
            yield mnist.train.next_batch(batch_size)

    model.fit_generator(generator=batch_generator(), epochs=training_epochs, steps_per_epoch=n_batches,
                        callbacks=[tensorboard_callback])

    print("Testing Accuracy:", model.evaluate(x=X_test, y=Y_test))


def tensorflow_train():
    input_placeholder, output_placeholder, dropout_ph, optimizer, activation, loss, accuracy, weight_initializer, \
    bias_initializer = get_network_utils()

    def make_layer(a, weight_shape, bias_shape, act=None):
        op = tf.add(tf.matmul(a, weight_initializer(weight_shape)), bias_initializer(bias_shape))
        return op if not act else act(op)

    # Model
    with tf.variable_scope('VisibleLayer'):
        visible_layer = make_layer(input_placeholder, [in_shape, n_neurons], [n_neurons], activation)
    dropout = tf.nn.dropout(visible_layer, keep_prob=dropout_ph, name='Dropout1')
    with tf.variable_scope('HiddenLayer1'):
        hidden_layer_1 = make_layer(dropout, [n_neurons, n_neurons], [n_neurons], activation)
    dropout = tf.nn.dropout(hidden_layer_1, keep_prob=dropout_ph, name='Dropout2')
    with tf.variable_scope('HiddenLayer2'):
        hidden_layer_2 = make_layer(dropout, [n_neurons, n_neurons], [n_neurons], activation)
    dropout = tf.nn.dropout(hidden_layer_2, keep_prob=dropout_ph, name='Dropout3')
    with tf.variable_scope('HiddenLayer3'):
        hidden_layer_3 = make_layer(dropout, [n_neurons, n_neurons], [n_neurons], activation)
    dropout = tf.nn.dropout(hidden_layer_3, keep_prob=dropout_ph, name='Dropout4')
    with tf.variable_scope('OutputLayer'):
        output_layer = make_layer(dropout, [n_neurons, out_shape], [out_shape])

    # Loss, Optimizer, Accuracy
    with tf.variable_scope('Loss'):
        tf_loss = loss(output_placeholder, output_layer)
    with tf.variable_scope('Optimizer'):
        tf_optimizer = optimizer.minimize(tf_loss)
    with tf.variable_scope('Accuracy'):
        tf_accuracy = accuracy(output_layer, output_placeholder)

    # Train
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        # Tensorboard graph
        tf.summary.FileWriter('/tmp/TensorflowLogs/tf_%s' % datetime.now().strftime('%Y%m%d_%H%M%S'),
                              graph=tf.get_default_graph())

        for epoch in range(training_epochs):
            sum_loss, sum_acc = 0., 0.
            for ii in range(n_batches):
                X_batch, Y_batch = mnist.train.next_batch(batch_size)
                sess.run(tf_optimizer, feed_dict={input_placeholder: X_batch, output_placeholder: Y_batch, dropout_ph: dropout_prob})
                loss_temp, accuracy_temp = sess.run([tf_loss, tf_accuracy], feed_dict={input_placeholder: X_batch, output_placeholder: Y_batch})
                sum_loss += loss_temp
                sum_acc += accuracy_temp
            print('E%d:\t[Loss: %05.5f\tAccuracy: %05.5f]\n' % ((epoch + 1), sum_loss / n_batches, sum_acc / n_batches))
        print("Testing Accuracy:[%f, %f]" % (tf_loss.eval({input_placeholder: X_test, output_placeholder: Y_test}),
                                             tf_accuracy.eval({input_placeholder: X_test, output_placeholder: Y_test})))
    tf.reset_default_graph()

if __name__ == '__main__':
    tensorflow_train()
    keras_train()

Я также попытался построить график с помощью Tensorboard, надеясь, что смогу найти некоторую видимую разницу, которая могла бы объяснить результаты:

enter image description here

Слева граф Кераса, справа график Тензор потока. Для тех, кто хочет глубже осмотреть, мои журналы Tensorboard могут быть загружены здесь .

Что я узнал по графику:

  • В модели Keras, первый выпадающий слой связан с другими выпадающими слоями, потому что он распространяет заполнитель keras_learning_phase на другие, чтобы убедиться, что выпадение не применяется во время оценки (я достигаю того же самого в модели Tensorflow с использованием созданного вручную заполнителя dropout_ph со значением по умолчанию 1.0).
  • В Keras функция потерь всегда получает дополнительный ввод OutputLayer_sample_weights. Поскольку я не указал веса выборки с потерями, они должны иметь значение 1.0 и, следовательно, не должны влиять на результаты.
  • В модели Keras у metrics как-то есть выход на оптимизатор? Понятия не имею, что вызывает это.

Есть еще несколько различий в графиках Tensorboard, но я теряюсь в поиске тех, которые приводят к разной точности. Будем благодарны за любые подсказки и помощь.

1 Ответ

0 голосов
/ 08 мая 2018

Существует важное различие между Keras и TensorFlow в отношении отсева:

  • В TensorFlow аргумент keep_prob из tf.nn.dropout устанавливает вероятность сохранение единицы.
  • В Керасе аргумент rate из keras.layers.Dropout устанавливает вероятность падения единицы.

В вашей реализации вы устанавливаете одинаковое значение для обоих аргументов.Вы должны убедиться, что keep_prob = 1 - rate.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...