Я хочу использовать Eigen для вычисления холеского разложения разреженной матрицы.Однако результат неверен, и я не могу найти причину для этого.Как я могу получить правильный ответ?
И существуют ли в Eigen специальные процедуры, использующие структуру разреженных матриц для повышения производительности (например, для полосчатых матриц, как в примере ниже или треугольных матриц)?
#include <iostream>
#include <Eigen/Sparse>
#include <Eigen/Dense>
int main()
{
// create sparse Matrix
int n = 5;
std::vector<Eigen::Triplet<double> > ijv;
for(int i = 0; i < n; i++)
{
ijv.push_back(Eigen::Triplet<double>(i,i,1));
if(i < n-1)
{
ijv.push_back(Eigen::Triplet<double>(i+1,i,-0.9));
}
}
Eigen::SparseMatrix<double> X(n,n);
X.setFromTriplets(ijv.begin(), ijv.end());
Eigen::SparseMatrix<double> XX = X * X.transpose();
// Cholesky decomposition
Eigen::SimplicialLLT <Eigen::SparseMatrix<double> > cholesky;
cholesky.analyzePattern(XX);
cholesky.factorize(XX);
std::cout << Eigen::MatrixXd(XX) << std::endl;
std::cout << Eigen::MatrixXd(cholesky.matrixL()) << std::endl;
}
Матрицы выглядят следующим образом:
Вход XX
:
1 -0.9 0 0 0
-0.9 1.81 -0.9 0 0
0 -0.9 1.81 -0.9 0
0 0 -0.9 1.81 -0.9
0 0 0 -0.9 1.81
Выход (cholesky.matrixL()
):
1.34536 0 0 0 0
-0.668965 1.16726 0 0 0
0 -0.771039 1.1025 0 0
0 0 0 1 0
0 0 -0.816329 -0.9 0.577587
Как это должно выглядеть (X
):
1 0 0 0 0
-0.9 1 0 0 0
0 -0.9 1 0 0
0 0 -0.9 1 0
0 0 0 -0.9 1