Решение для грубой силы. Будет работать, но может считаться слишком медленным для большей матрицы:
mOrig = [[1, -9, -2, 8, 6, 1],
[8, -1,-11, -7, 6, 4],
[10, 12, -1, -9, -12, 14],
[8, 10, -3, -5, 17, 8],
[6, 4, 10, -13, -16, 19]]
# reduce the problem
# now we have a matrix that contains only 0 and 1
# at the place where there was a negative number
# there is now a 1 and at the places where a positive
# number had been there is now a 0. 0s are considered
# to be negative numbers, if you want to change this,
# change the x < 0 to x <= 0.
m = [[1 if x < 0 else 0 for x in z] for z in mOrig]
# now we have the problem to find the biggest submatrix
# consisting only 1s.
# first a function that checks if a submatrix only contains 1s
def containsOnly1s(m, x1, y1, x2, y2):
for i in range(x1, x2):
for j in range(y1, y2):
if m[i][j] == 0:
return False
return True
def calculateSize(x1, y1, x2, y2):
return (x2 - x1) * (y2 - y1)
best = (-1, -1, -1, -1, -1)
for x1 in range(len(m)):
for y1 in range(len(m[0])):
for x2 in range(x1, len(m)):
for y2 in range(y1, len(m[0])):
if containsOnly1s(m, x1, y1, x2, y2):
sizeOfSolution = calculateSize(x1, y1, x2, y2)
if best[4] < sizeOfSolution:
best = (x1, y1, x2, y2, sizeOfSolution)
for x in range(best[0], best[2]):
print("\t".join([str(mOrig[x][y]) for y in range(best[1], best[3])]))
Будет выводить
-11 -7
-1 -9
-3 -5
В случае, если что-то еще подразумевается под «самой большой подматрицей», единственная функция, которую необходимо изменить, это следующее:
def calculateSize(x1, y1, x2, y2):
return (x2 - x1) * (y2 - y1)
, который вычисляет размер подматрицы.
Редактировать 1 ... первое ускорение
best = (-1, -1, -1, -1, -1)
for x1 in range(len(m)):
for y1 in range(len(m[0])):
if m[x1][y1] == 1: # The starting point must contain a 1
for x2 in range(x1 + 1, len(m)): # actually can start with x1 + 1 here
for y2 in range(y1 + 1, len(m[0])):
if containsOnly1s(m, x1, y1, x2, y2):
sizeOfSolution = calculateSize(x1, y1, x2, y2)
if best[4] < sizeOfSolution:
best = (x1, y1, x2, y2, sizeOfSolution)
else:
# There is at least one 0 in the matrix, so every greater
# matrix will also contain this 0
break
Редактировать 2
Хорошо, после преобразования матрицы в матрицу из 0 и 1 (как я делаю через строку m = [[1 if x < 0 else 0 for x in z] for z in mOrig]
, проблема та же, что в литературе называется the maximal rectangle problem
. Поэтому я немного погуглил об известных алгоритмах для проблема такого рода и встречалась здесь на этом сайте http://www.drdobbs.com/database/the-maximal-rectangle-problem/184410529, который описывает очень быстрый алгоритм для решения этой проблемы. Чтобы суммировать точки этого сайта, алгоритм использует структуру. Это может быть сделано с помощью использование стека для запоминания профиля структуры, который позволяет нам пересчитать ширину в случае повторного использования узкого прямоугольника при закрытии более широкого прямоугольника.