(Это дополнительный вопрос, связанный с временными шагами Сципиона ОДУ, идущими назад )
У меня есть система уравнений, которую я пытаюсь решить с помощью scipy's solve_ivp
. Вот минимальный рабочий код:
import numpy as np
from scipy.integrate import solve_ivp
def synapse(t, t0):
tau_1 = 5.3
tau_2 = 0.05
tau_rise = (tau_1 * tau_2) / (tau_1 - tau_2)
B = ((tau_2 / tau_1)**(tau_rise / tau_1) - (tau_2 / tau_1)**(tau_rise / tau_2)) ** -1
return B*(np.exp(-(t - t0) / tau_1) - np.exp(-(t - t0) / tau_2))
def alpha_m(v, vt):
return -0.32*(v - vt -13)/(np.exp(-1*(v-vt-13)/4)-1)
def beta_m(v, vt):
return 0.28 * (v - vt - 40) / (np.exp((v- vt - 40) / 5) - 1)
def alpha_h(v, vt):
return 0.128 * np.exp(-1 * (v - vt - 17) / 18)
def beta_h(v, vt):
return 4 / (np.exp(-1 * (v - vt - 40) / 5) + 1)
def alpha_n(v, vt):
return -0.032*(v - vt - 15)/(np.exp(-1*(v-vt-15)/5) - 1)
def beta_n(v, vt):
return 0.5* np.exp(-1*(v-vt-10)/40)
def event(t,X):
return X[0] + 20
event.terminal = False
event.direction = +1
def f(t, X):
V = X[0]
m = X[1]
h = X[2]
n = X[3]
last_inputspike = inputspike[inputspike.searchsorted(t, side='right') - 1 ]
last_t_event = -100 #Not sure what to put here
g_syn_in = synapse(t, last_inputspike)
g_syn_spike = synapse(t, last_t_event)
syn = 0.5 * g_syn_in * (V - 0) + 0.2 * g_syn_spike * (V + 70)
dVdt = - 50*m**3*h*(V-60) - 10*n**4*(V+100) - syn - 0.1*(V + 70)
dmdt = alpha_m(V, -45)*(1-m) - beta_m(V, -45)*m
dhdt = alpha_h(V, -45)*(1-h) - beta_h(V, -45)*h
dndt = alpha_n(V, -45)*(1-n) - beta_n(V, -45)*n
return [dVdt, dmdt, dhdt, dndt]
# Define the spike events:
nbr_spike = 20
beta = 100
first_spike_date = 500
np.random.seed(0)
inputspike = np.cumsum( np.random.exponential(beta, size=nbr_spike) ) + first_spike_date
inputspike = np.insert(inputspike, 0, -1e4) # set a very old spike at t=-1e4
# it is a hack in order to set a t0 for t<first_spike_date (model settle time)
# so that `synapse(t, t0)` can be called regardless of t
# synapse(t, -1e4) = 0 for t>0
# Solve:
t_start = 0.0
t_end = 2000
X_start = [-70, 0, 1,0]
sol = solve_ivp(f, [t_start, t_end], X_start, method='BDF', max_step=1, vectorized=True, events=event)
print(sol.message)
Я хочу определить, когда имеется всплеск (определенный как V> 20), и чтобы время всплеска влияло на syn
в ODE посредством изменения g_syn_spike
, так же, как случайный вход влияет на это.
По сути, мне было интересно, возможно ли это и как я могу получить доступ к последнему значению sol.t_events
на данной итерации решателя?