Ниже приведено автономное , и при запуске оно будет:
1. распечатать потерю, чтобы убедиться, что она уменьшается (изучая sin
wave),
2. Проверьте числовые градиенты по моей ручной градиентной функции.
Два градиента имеют тенденцию совпадать в пределах 1e-1 to 1e-2
(который до сих порплохо, но показывает, что пытается ) и иногда случаются экстремальные выбросы.
Я провел всю субботу, возвращаясь к нормальному FFNN, чтобы заставить его работать (ууу, градиенты совпадают!),и теперь воскресенье на этом LSTM, и я не могу найти ошибку в моей логике.О, и это сильно зависит от моего случайного начального числа, иногда это здорово, иногда ужасно.
Я проверил свою реализацию по производным от руки производным для уравнений LSTM (я сделал исчисление) и от реализацийв этих 3 блогах / гист:
И попробовал (удивительные) методы отладки, предложенные здесь: https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working-4020854bd607
Можете ли вы помочь увидеть, где я реализовал что-то не так?
import numpy as np
np.set_printoptions(precision=3, suppress=True)
def check_grad(params, In, Target, f, df_analytical, delta=1e-5, tolerance=1e-7, num_checks=10):
"""
delta : how far on either side of the param value to go
tolerance : how far the analytical and numerical values can diverge
"""
h_n = params['Wf'].shape[1] # TODO: h & c should be passed in (?)
h = np.zeros(h_n)
c = np.zeros(h_n)
y, outputs, loss, h, c, caches = f(params, h, c, inputs, targets)
dparams = df_analytical(params, inputs, targets, outputs, caches)
passes = True
for _ in range(num_checks):
print()
for pname, p, dpname, dp in zip(params.keys(), params.values(), dparams.keys(), dparams.values()):
pix = np.random.randint(0, p.size)
old_val = p.flat[pix]
# d = delta * abs(old_val) if old_val != 0 else 1e-5
d = delta
p.flat[pix] = old_val + d
_, _, loss_plus, _, _, _ = f(params, h, c, In, Target) # note `_` is the cache
p.flat[pix] = old_val - d
_, _, loss_minus, _, _, _ = f(params, h, c, In, Target)
p.flat[pix] = old_val
grad_analytic = dp.flat[pix]
grad_numeric = (loss_plus - loss_minus) / (2 * d)
denom = abs(grad_numeric + grad_analytic) + 1e-12 # max((abs(grad_numeric), abs(grad_analytic)))
relative_error = abs(grad_analytic - grad_numeric) / denom
if relative_error > tolerance:
print(("fails: %s % 4d | r: % 3.4f, a: % 3.4f, n: % 3.4f, a/n: %0.2f") % (pname, pix, relative_error, grad_analytic, grad_numeric, grad_analytic/grad_numeric))
passes &= relative_error <= tolerance
return passes
# ----------
def lstm(params, inp, h_old, c_old):
Wf, Wi, Wg, Wo, Wy = params['Wf'], params['Wi'], params['Wg'], params['Wo'], params['Wy']
bf, bi, bg, bo, by = params['bf'], params['bi'], params['bg'], params['bo'], params['by']
xh = np.concatenate([inp, h_old])
f = np.dot(xh, Wf) + bf
f_sigm = 1 / (1 + np.exp(-f))
i = np.dot(xh, Wi) + bi
i_sigm = 1 / (1 + np.exp(-i))
g = np.dot(xh, Wg) + bg # C-tilde or C-bar in the literature
g_tanh = np.tanh(g)
o = np.dot(xh, Wo) + bo
o_sigm = 1 / (1 + np.exp(-o))
c = f_sigm * c_old + i_sigm * g_tanh
c_tanh = np.tanh(c)
h = o_sigm * c_tanh
y = np.dot(h, Wy) + by # NOTE: this is a dense layer bolted on after a normal LSTM
# TODO: should it have a nonlinearity after it? MSE would not work well with, for ex, a sigmoid
cache = (xh, f, f_sigm, i, i_sigm, g, g_tanh, o, o_sigm, c, c_tanh, c_old, h)
return y, h, c, cache
def dlstm(params, dy, dh_next, dc_next, cache):
Wf, Wi, Wg, Wo, Wy = params['Wf'], params['Wi'], params['Wg'], params['Wo'], params['Wy']
bf, bi, bg, bo, by = params['bf'], params['bi'], params['bg'], params['bo'], params['by']
xh, f, f_sigm, i, i_sigm, g, g_tanh, o, o_sigm, c, c_tanh, c_old, h = cache
dby = dy.copy()
dWy = np.outer(h, dy)
dh = np.dot(dy, Wy.T) + dh_next.copy()
do = c_tanh * dh * o_sigm * (1 - o_sigm)
dc = dc_next.copy() + o_sigm * dh * (1 - c_tanh ** 2) # TODO: copy?
dg = i_sigm * dc * (1 - g_tanh ** 2)
di = g_tanh * dc * i_sigm * (1 - i_sigm)
df = c_old * dc * f_sigm * (1 - f_sigm) # ERROR FIXED: ??? c_old -> c?, c->c_old?
dWo = np.outer(xh, do); dbo = do; dXo = np.dot(do, Wo.T)
dWg = np.outer(xh, dg); dbg = dg; dXg = np.dot(dg, Wg.T)
dWi = np.outer(xh, di); dbi = di; dXi = np.dot(di, Wi.T)
dWf = np.outer(xh, df); dbf = df; dXf = np.dot(df, Wf.T)
dX = dXo + dXg + dXi + dXf
dh_next = dX[-h.size:]
dc_next = f_sigm * dc
dparams = dict(Wf = dWf, Wi = dWi, Wg = dWg, Wo = dWo, Wy = dWy,
bf = dbf, bi = dbi, bg = dbg, bo = dbo, by = dby)
return dparams, dh_next, dc_next
def lstm_loss(params, h, c, inputs, targets):
loss = 0
outputs = []
caches = []
for inp, target in zip(inputs, targets):
y, h, c, cache = lstm(params, inp, h, c)
loss += np.mean((y - target) ** 2)
outputs.append(y)
caches.append(cache)
loss = loss # / inputs.shape[0]
return y, outputs, loss, h, c, caches
def dlstm_loss(params, inputs, targets, outputs, caches):
h_shape = caches[0][-1].shape
dparams = {k:np.zeros_like(v) for k, v in params.items()}
dh = np.zeros(h_shape)
dc = np.zeros(h_shape)
for inp, out, target, cache in reversed(list(zip(inputs, outputs, targets, caches))):
dy = 2 * (out - target)
dps, dh, dc = dlstm(params, dy, dh, dc, cache)
for dpk, dpv in dps.items():
dparams[dpk] += dpv
return dparams
# ----------
# setup
x_n = 1
h_n = 5
o_n = 1
params = dict(
Wf = np.random.normal(size=(x_n + h_n, h_n)),
Wi = np.random.normal(size=(x_n + h_n, h_n)),
Wg = np.random.normal(size=(x_n + h_n, h_n)),
Wo = np.random.normal(size=(x_n + h_n, h_n)),
Wy = np.random.normal(size=(h_n, o_n)),
bf = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
bi = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
bg = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
bo = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
by = np.zeros(o_n) + np.random.normal(size=o_n) * 0.1,
)
for name in ['Wf', 'Wi', 'Wg', 'Wo', 'Wy']:
W = params[name]
W *= np.sqrt(2 / (W.shape[0] + W.shape[1])) # Xavier initialization
for name in params:
params[name] = params[name].astype('float64')
# ----------
# Sanity check, learn sin wave
def test_sin():
emaloss = 1 # EMA average
emak = 0.99
for t in range(5000):
data = np.sin(np.linspace(0, 3 * np.pi, 30))
start = np.random.randint(0, data.size // 4)
end = np.random.randint((data.size * 3) // 4, data.size)
inputs = data[start:end, None]
targets = np.roll(inputs, 1, axis=0)
h_n = params['Wf'].shape[1] # TODO: h & c should be passed in
h = np.random.normal(size=h_n)
c = np.random.normal(size=h_n)
y, outputs, loss, h, c, caches = lstm_loss(params, h, c, inputs, targets)
dparams = dlstm_loss(params, inputs, targets, outputs, caches)
for k in params.keys():
params[k] -= dparams[k] * 0.01
emaloss = emaloss * emak + loss * (1 - emak)
if t % 100 == 0:
print('%.4f' % emaloss)
test_sin()
# ----------
data = np.sin(np.linspace(0, 4 * np.pi, 90))
start = np.random.randint(0, data.size // 4)
end = np.random.randint((data.size * 3) // 4, data.size)
inputs = data[start:end, None]
targets = np.roll(inputs, 1, axis=0)
for inp, targ in zip(inputs, targets):
assert(check_grad(params, inputs, targets, lstm_loss, dlstm_loss, delta=1e-5, tolerance=1e-7, num_checks=10))
print('grads are ok') # <- i never reach here