У меня много проблем с моделью нейронной сети, использующей функцию R neuralnet ().Когда я тренирую сеть на всех данных, как и ожидалось, прогнозы очень точны.Однако, когда я разделяю данные на обучающие и тестовые наборы, прогнозы теста ужасны.Я не могу понять, что все, что я делаю неправильно.Я был бы признателен за любые советы или помощь в устранении неполадок, так как я не думаю, что смогу понять это самостоятельно.Заранее спасибо.
Я включил код R и некоторые графики, и пример данных под полными данными - 3600 наблюдений.
Best Regards-Pat
ОБНОВЛЕНИЕ05/12/18: НА ОСНОВЕ ОБРАТНОЙ СВЯЗИ, ЧТО ЭТОТ ВЫГЛЯДИТ, КАК ПЕРЕКРЕПЛЕНИЕ, Я ПЫТАЛСЯ ОСТАНОВИТЬ УЧЕБНУЮ УЧЕБНУЮ УЧЕБНУЮ РАБОТУ И НАЙТИ, ЧТО MSE ПРОГНОЗА ИСПЫТАНИЯ НИКОГДА НЕ ПОЛУЧАЕТ ОЧЕНЬ НИЗКИЙ И НИЗКИЙ ПОДХОД К ОБУЧЕНИЮ ЭДОЛАПРИЛОЖЕНО)
###########
#ANN Models
###########
#Load libraries
library(plyr)
library(ggplot2)
library(gridExtra)
library(neuralnet)
#Retain only numerically coded data from data1 in (data2) for ANN fitting
data2 = data1[,c(3:7)]
#Calculate Min and Max for Scaling
max_data = apply(data2,2,max)
min_data = apply(data2,2,min)
#Scale data 0-1
data2_scaled = scale(data2,center=min_data,scale=max_data-min_data)
#Check data structure
data2_scaled
#Fit neural net model
model_nn1 = neuralnet(formula=time~instructions+nodes+machine_num+app_num,data=data2_scaled,hidden=c(8,8),stepmax=1000000,threshold=0.01)
#Calculate Min and Max Response for rescaling
max_time = max(data2$time)
min_time = min(data2$time)
#Rescale neural net response predictions
pred_nn1 = model_nn1$net.result[[1]][,1]*(max_time-min_time)+min_time
#Compare model predictions to actual values
a03 = cbind.data.frame(data1$time,pred_nn1,data1$machine,data1$app)
colnames(a03) = c("actual","prediction","machine","app")
attach(a03)
p01 = ggplot(a03,aes(x=actual,y=prediction))+
geom_point(aes(color=machine),size=1)+
scale_y_continuous("Predicted Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
scale_x_continuous("Actual Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
ggtitle("Neural Net Fit (ALL DATA):\nActual vs. Predicted Execution Time")+
geom_abline(intercept=0,slope=1)+
theme_light()
p02 = ggplot(a03,aes(x=actual,y=prediction))+
geom_point(aes(color=app),size=1)+
scale_y_continuous("Predicted Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
scale_x_continuous("Actual Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
ggtitle("Neural Net Fit (ALL DATA):\nActual vs. Predicted Execution Time")+
geom_abline(intercept=0,slope=1)+
theme_light()
grid.arrange(p01,p02,nrow=1)
#Visualize ANN
plot(model_nn1)
#Epochs taken to train "steps"
model_nn1$result.matrix[3,]
#########################
#Testing and Training ANN
#########################>
#Split the data into a test and training set
index = sample(1:nrow(data2_scaled),round(0.80*nrow(data2_scaled)))
train_data = as.data.frame(data2_scaled[index,])
test_data = as.data.frame(data2_scaled[-index,])
model_nn2 = neuralnet(formula=time~instructions+nodes+machine_num+app_num,data=train_data,hidden=c(3,2),stepmax=1000000,threshold=0.01)
pred_nn2_scaled = compute(model_nn2,test_data[,c(1,2,4,5)])
pred_nn2 = pred_nn2_scaled$net.result*(max_time-min_time)+min_time
test_data_time = test_data$time*(max_time-min_time)+min_time
a04 = cbind.data.frame(test_data_time,pred_nn2,data1[-index,2],data1[-index,1])
colnames(a04) = c("actual","prediction","machine","app")
attach(a04)
p01 = ggplot(a04,aes(x=actual,y=prediction))+
geom_point(aes(color=machine),size=1)+
scale_y_continuous("Predicted Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
scale_x_continuous("Actual Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
ggtitle("Neural Net Fit (TEST DATA):\nActual vs. Predicted Execution Time")+
geom_abline(intercept=0,slope=1)+
theme_light()
p02 = ggplot(a04,aes(x=actual,y=prediction))+
geom_point(aes(color=app),size=1)+
scale_y_continuous("Predicted Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
scale_x_continuous("Actual Execution Time [s]",breaks=seq(0,1000,100),limits=c(0,1000))+
ggtitle("Neural Net Fit (TEST DATA):\nActual vs. Predicted Execution Time")+
geom_abline(intercept=0,slope=1)+
theme_light()
grid.arrange(p01,p02,nrow=1)
#EARLY STOPPING TEST
i = 1000
summary_data = data.frame(matrix(rep(0,4*i),ncol=4))
colnames(summary_data) = c("treshold","epochs","train_mse","test_mse")
for (j in 1:i){
a = runif(1,min=0.01,max=10)
#Train the model
model_nn2 = neuralnet(formula=time~instructions+nodes+machine_num+app_num,data=train_data,hidden=3,stepmax=1000000,threshold=a)
#Calculate Min and Max Response for rescaling
max_time = max(data2$time)
min_time = min(data2$time)
#Predict test data from trained nn
pred_nn2_scaled = compute(model_nn2,test_data[,c(1,2,4,5)])
#Rescale test prediction
pred_test_data_time = pred_nn2_scaled$net.result*(max_time-min_time)+min_time
#Rescale test actual
test_data_time = test_data$time*(max_time-min_time)+min_time
#Rescale train prediction
pred_train_data_time = model_nn2$net.result[[1]][,1]*(max_time-min_time)+min_time
#Rescale train actual
train_data_time = train_data$time*(max_time-min_time)+min_time
#Calculate mse
test_mse = mean((pred_test_data_time-test_data_time)^2)
train_mse = mean((pred_train_data_time-train_data_time)^2)
#Summarize
summary_data[j,1] = a
summary_data[j,2] = model_nn2$result.matrix[3,]
summary_data[j,3] = round(train_mse,3)
summary_data[j,4] = round(test_mse,3)
print(summary_data[j,])
}
plot(summary_data$epochs,summary_data$test_mse,pch=19,xlim=c(0,2000),ylim=c(0,300000),cex=0.5,xlab="Training Steps",ylab="MSE",main="Early Stopping Test: Comparing MSE : TEST=BLACK TRAIN=RED")
points(summary_data$epochs,summary_data$train_mse,pch=19,col=2,cex=0.5)