работает Deeplab v3 + с тензорным - PullRequest
0 голосов
/ 15 ноября 2018

Я пытаюсь оптимизировать модель Deeplab v3 +, используя tennorsRT, и получаю следующие ошибки:

    UFF Version 0.5.5
=== Automatically deduced input nodes ===
[name: "ImageTensor"
op: "Placeholder"
attr {
  key: "_output_shapes"
  value {
    list {
      shape {
        dim {
          size: 1
        }
        dim {
          size: -1
        }
        dim {
          size: -1
        }
        dim {
          size: 3
        }
      }
    }
  }
}
attr {
  key: "dtype"
  value {
    type: DT_UINT8
  }
}
attr {
  key: "shape"
  value {
    shape {
      dim {
        size: 1
      }
      dim {
        size: -1
      }
      dim {
        size: -1
      }
      dim {
        size: 3
      }
    }
  }
}
]
=========================================

=== Automatically deduced output nodes ===
[name: "Squeeze_1"
op: "Squeeze"
input: "resize_images/ResizeNearestNeighbor"
attr {
  key: "T"
  value {
    type: DT_INT64
  }
}
attr {
  key: "_output_shapes"
  value {
    list {
      shape {
        dim {
          size: 1
        }
        dim {
          size: -1
        }
        dim {
          size: -1
        }
      }
    }
  }
}
attr {
  key: "squeeze_dims"
  value {
    list {
      i: 3
    }
  }
}
]
==========================================

Using output node Squeeze_1
Converting to UFF graph
Warning: No conversion function registered for layer: ResizeNearestNeighbor yet.
Converting resize_images/ResizeNearestNeighbor as custom op: ResizeNearestNeighbor
Warning: No conversion function registered for layer: ExpandDims yet.
Converting ExpandDims_1 as custom op: ExpandDims
Warning: No conversion function registered for layer: Slice yet.
Converting Slice as custom op: Slice
Warning: No conversion function registered for layer: ArgMax yet.
Converting ArgMax as custom op: ArgMax
Warning: No conversion function registered for layer: ResizeBilinear yet.
Converting ResizeBilinear_2 as custom op: ResizeBilinear
Warning: No conversion function registered for layer: ResizeBilinear yet.
Converting ResizeBilinear_1 as custom op: ResizeBilinear
Traceback (most recent call last):
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\iariav\Anaconda3\envs\tensorflow\Scripts\convert-to-uff.exe\__main__.py", line 9, in <module>
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\site-packages\uff\bin\convert_to_uff.py", line 89, in main
    debug_mode=args.debug
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\site-packages\uff\converters\tensorflow\conversion_helpers.py", line 187, in from_tensorflow_frozen_model
    return from_tensorflow(graphdef, output_nodes, preprocessor, **kwargs)
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\site-packages\uff\converters\tensorflow\conversion_helpers.py", line 157, in from_tensorflow
    debug_mode=debug_mode)
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\site-packages\uff\converters\tensorflow\converter.py", line 94, in convert_tf2uff_graph
    uff_graph, input_replacements, debug_mode=debug_mode)
  File "c:\users\iariav\anaconda3\envs\tensorflow\lib\site-packages\uff\converters\tensorflow\converter.py", line 72, in convert_tf2uff_node
    inp_node = tf_nodes[inp_name]
KeyError: 'logits/semantic/biases/read'

Насколько я понимаю, это вызвано некоторыми слоями, которые не поддерживаются конвертером uff?Кому-нибудь удалось преобразовать модель Deeplab в UFF?Я использую оригинальную модель Deeplabv3 + в тензорном потоке.

спасибо

1 Ответ

0 голосов
/ 20 ноября 2018

да, иногда заставить конкретную модель работать в TensorRT немного сложно из-за поддержки слоев. С новым TensorRT 5GA это поддерживаемые слои (взяты из Руководства разработчика):

Tensorflow Supported Layers

Спросите, можете ли вы увидеть, что у вас есть несколько слоев, таких как ResizeNearestNeighbor, ResizeBilinear и ArgMax, ваш лучший подход и то, что я в итоге сделал, это портирование сети в определенную точку и использование cpp API для создания слоев Мне было нужно. Проверьте IPluginV2 и IPluginCreator и посмотрите, сможете ли вы реализовать слои самостоятельно.

Я думаю, что со временем появится больше поддержки слоев, но я думаю, что если вы не можете ждать, просто попробуйте.

...