Вот проблема оптимизации , которую я пытаюсь решить (с небольшим поворотом, с помощью кода opl , который я использую.
Код opl дает мне два решения, а именно: {Product12, Product31}
Когда я перевожу это на язык Python, используя docplex, используя этот код:
from docplex.mp.model import Model
from docplex.util.environment import get_environment
# ----------------------------------------------------------------------------
# Initialize the problem data
# ----------------------------------------------------------------------------
Categories_groups = {"Carbs": ["Meat","Milk"],"Protein":["Pasta","Bread"], "Fat": ["Oil","Butter"]}
Groups_Products = {"Meat":["Product11","Product12"], "Milk": ["Product21","Product22","Product23"], "Pasta": ["Product31","Product32"],
"Bread":["Product41","Product42"], "Oil":["Product51"],"Butter":["Product61","Product62"]}
Products_Prices ={"Product11":1,"Product12":1, "Product21":3,"Product22":3,"Product23":2,"Product31":1,"Product32":2,
"Product41":1,"Product42":3, "Product51": 1,"Product61":2,"Product62":1}
Uc={"Protein":1,"Carbs": 0, "Fat": 0}
Ug = {"Meat": 0.8, "Milk": 0.2, "Pasta": 0.1, "Bread": 1, "Oil": 0.01, "Butter": 0.6}
budget=2
def build_userbasket_model(**kwargs):
allcategories = Categories_groups.keys()
allgroups = Groups_Products.keys()
allproducts = Products_Prices.keys()
# Model
mdl = Model(name='userbasket', **kwargs)
z = mdl.binary_var_dict(allproducts, name='%s')
xg = {g: mdl.sum(z[p] for p in Groups_Products[g]) for g in allgroups}
xc = {c: 1 <= mdl.sum(xg[g] for g in Categories_groups[c]) for c in allcategories}
mdl.add_constraint(mdl.sum(Products_Prices[p] * z[p] for p in allproducts) <= budget)
for g in allgroups:
mdl.add_constraint(xg[g]==1 )
for c in allcategories:
mdl.add_constraint(Uc[c] == xc[c])
mdl.maximize(mdl.sum(Uc[c] * xc[c] for c in allcategories) + mdl.sum(
xg[g] * Uc[c] * Ug[g] for c in allcategories for g in Categories_groups[c] ))
return mdl
if __name__ == '__main__':
"""DOcplexcloud credentials can be specified with url and api_key in the code block below.
Alternatively, Context.make_default_context() searches the PYTHONPATH for
the following files:
* cplex_config.py
* cplex_config_<hostname>.py
* docloud_config.py (must only contain context.solver.docloud configuration)
These files contain the credentials and other properties. For example,
something similar to::
context.solver.docloud.url = "https://docloud.service.com/job_manager/rest/v1"
context.solver.docloud.key = "example api_key"
"""
url = None
key = None
mdl = build_userbasket_model()
# will use IBM Decision Optimization on cloud.
if not mdl.solve(url=url, key=key):
print("*** Problem has no solution")
else:
mdl.float_precision = 3
print("* model solved as function:")
mdl.print_solution()
'''
Solution displayed using the line of code above
solution = mdl.solution
for index, dvar in enumerate(solution.iter_variables()):
print index, dvar.to_string(), solution[dvar], solution.get_var_value(dvar)
# Save the CPLEX solution as "solution.json" program output
with get_environment().get_output_stream("solution.json") as fp:
mdl.solution.export(fp, "json")
Я понял:
*** У проблемы нет решения
Я не понимаю, почему у меня разные результаты, может кто-нибудь помочь мне с этим, пожалуйста.
Заранее спасибо.
Привет