Чтобы использовать broadcasting
, нам нужно разбить его на 3D
, а затем переставить оси и добавить -
n = A.shape[0]
m = A.shape[1]//n
a = A.reshape(n,m,n) # reshape to 3D
out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
Пример прогона для проверки -
In [359]: # Setup input array
...: np.random.seed(0)
...: n,m = 3,4
...: A = np.random.randint(1,10,(n,n*m))
In [360]: # Original soln
...: out0 = np.tile(A, (m, 1)) + np.tile(A.T, (1, m))
In [361]: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
In [362]: np.allclose(out0, out)
Out[362]: True
Сроки с большим n
, m
-
In [363]: # Setup input array
...: np.random.seed(0)
...: n,m = 100,100
...: A = np.random.randint(1,10,(n,n*m))
In [364]: %timeit np.tile(A, (m, 1)) + np.tile(A.T, (1, m))
1 loop, best of 3: 407 ms per loop
In [365]: %%timeit
...: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
1 loop, best of 3: 219 ms per loop
Дальнейшее повышение производительности с numexpr
Мы можем использовать multi-core
с numexpr
модулем для больших данных и для повышения эффективности памяти и, следовательно, производительности -
import numexpr as ne
n = A.shape[0]
m = A.shape[1]//n
a = A.reshape(n,m,n)
p1 = a[None,:,:,:]
p2 = a.transpose(1,2,0)[:,:,None,:]
out = ne.evaluate('p1+p2').reshape(n*m,-1)
Синхронизация с такими же большими настройками n
, m
-
In [367]: %%timeit
...: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: p1 = a[None,:,:,:]
...: p2 = a.transpose(1,2,0)[:,:,None,:]
...: out = ne.evaluate('p1+p2').reshape(n*m,-1)
10 loops, best of 3: 152 ms per loop