Я пытаюсь минимизировать скалярное произведение из 2 векторов, но оно не работает, и я понятия не имею, почему.Может кто-нибудь помочь мне?
У меня есть матрица c этой формы:
c = [[c11, c12, c13, c14, c15],
[c21, c22, c23, c24, c25]]
Я хочу получить матрицу p этой формы:
p = [[p11, p12, p13, p14, p15],
[p21, p22, p23, p24, p25]]
Я хочу максимизировать это значение:
c11*p11 + c12*p12 +c13*p13 + c14*p14 + c15*p15 + c21*p21 + c22*p22 +c23*p23 + c24*p24 + c25*p25
Чтобы получить это, я конвертирую c и p в 1-D вектор и делаю скалярное произведение так, чтобы моя функция максимизации была:
f(p) = c.dot(p)
Ограничения:
c11 + c12 + c13 + c14 + c15 = 1
c21 + c22 + c23 + c24 + c25 = 1
каждый элемент в p должен быть в диапазоне от 0,01 до 0,99.
Я пробовал scipy.optimize.linprog, и он работает:
from scipy.optimize import linprog
c = np.array([0. , 0. , 0. , 0. , 0. , 0. , 20094.21019108, 4624.08079143, 6625.51724138, 3834.81081081])
A_eq = np.array([[1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1]])
b_eq = np.array([1, 1])
res = linprog(-c, A_eq=A_eq, b_eq=b_eq, bounds=(0.01, 0.99))
res
Out[561]:
fun: -19441.285871873002
message: 'Optimization terminated successfully.'
nit: 13
slack: array([0.03, 0.98, 0.98, 0.98, 0.98, 0.98, 0.03, 0.98, 0.98, 0.98, 0. ,
0. , 0.95, 0. , 0. , 0. , 0. , 0. , 0. , 0. ])
status: 0
success: True
x: array([0.96, 0.01, 0.01, 0.01, 0.01, 0.01, 0.96, 0.01, 0.01, 0.0
Но я вместо этого пытаюсь использовать scipy.optimize.minimize с SLSQP, и именно здесь я получаю эту «Сингулярную матрицу C в подзадаче LSQ».Вот что я сделал:
from scipy.optimize import minimize
def build_objective(ck, sign = -1.00):
"""
Builds the objective fuction for matrix ck
"""
# Here I turn my c matrix to a 1-D matrix
ck = np.concatenate(ck)
def objective(P):
return sign*(ck.dot(P))
return objective
def build_constraint_rows(ck):
"""
Builds the constraint functions that specify that the sum of the proportions for
each bin equals 1
"""
ncol = ck.shape[1]
nrow = ck.shape[0]
constrain_dict = []
for i in range(nrow):
vector = np.zeros((nrow,ncol))
vector[i, :] = 1
vector = np.concatenate(vector)
def row_constrain(P):
return 1 - vector.dot(P)
constrain_dict.append({'type': 'eq', 'fun': row_constrain})
return constrain_dict
# Matrix: Notice that this is not in vector form yet
c = np.array([[0. , 0. , 0. , 0., 0.],
[0. , 20094.21019108, 4624.08079143, 6625.51724138, 3834.81081081]])
# I need some initial p matrix for the function 'minimize'. I look for the value of the row that is the highest and assign it a proportion p of 0.96 and the rest 0.01 so the sum in 1 per row
P_initial = np.ones(c.shape)*0.01
nrow = test.shape[0]
for i in range(nrow):
index= np.where(c[i,] == np.max(c[i,]))[0]
if index.shape[0] > 1:
index = int(np.random.choice(index, size = 1))
else:
index = int(index)
P_initial[i,index] = 0.96
# I turn the P_initial to vector form
P_initial = np.concatenate(P_initial)
# These are the bounds of each p value
b = (0.01,0.99)
bnds = (b,)*c.size
# I then use my previous functions
objective_fun = build_objective(c)
cons = build_constraint_rows(c)
res = minimize(objective_fun,P_initial,method='SLSQP',\
bounds=bnds,constraints=cons)
Это мой окончательный результат:
res
Out[546]:
fun: -19434.501741138763
jac: array([0. , 0.,0. , 0. ,0. , 0., -20094.21020508, -4624.08056641, -6625.51708984, -3834.81079102])
message: 'Singular matrix C in LSQ subproblem'
nfev: 24
nit: 2
njev: 2
status: 6
success: False
x: array([0.96 , 0.01 , 0.01 , 0.01 , 0.01 ,
0.01020202, 0.95962502, 0.01006926, 0.01001178, 0.01009192])
Пожалуйста, помогите мне понять, что я делаю неправильно.
СпасибоВы в продвинутом,
Кароль