Извините, за мой новый вопрос.Я все еще учусь, как проводить пространственный анализ в R. Я понимаю, что этот вопрос уже задавался ( здесь ).
Цель : я не могу запустить этот код с смоделированными данными в параметрах специально для моих значений долготы (X) (см. Строку: 24).Я хотел бы построить домашний диапазон с моделируемыми данными (ниже).
Ошибка : "Ошибка в getverticeshr.estUD (x [[i]], проценты, ida = names (x) [i], unin,: Сетка слишком мала, чтобы разрешитьоценка home-range. Вам следует перезапустить kernelUD с большим параметром экстента "
# 1. Packages
library(adehabitatHR) # Package for spatal analysis
# 2. Empty Dataframe
points <- data.frame(ID = double())
XY_cor <- data.frame(X = double(),
Y = double())
# 3. Assigning values (this will be our spatial coordinates)
set.seed(17)
for(i in c(1:100)){
if(i >= 50){points[i, 1] <- 1}
else {points[i, 1] <- 2}
XY_cor[i, 1] <- runif(1, -78.86887, -78.86440) ## error is here!
XY_cor[i, 2] <- runif(1, 0.958533, 0.960777)}
# 4. Transform to SpatialDataframe
coordinates(points) <- XY_cor[, c("X", "Y")]
class(points)
# 5. Domain
x <- seq(-80.0, -77.0, by=1.) # resolution is the pixel size you desire
y <- seq(-200, 200, by=1.)
xy <- expand.grid(x=x,y=y)
coordinates(xy) <- ~x+y
gridded(xy) <- TRUE
class(xy)
# 6. Kernel Density
kud_points <- kernelUD(points, h = "href", grid = xy)
image(kud_points)
# 7. Get the Volum
vud_points <- getvolumeUD(kud_points)
# 8. Get contour
levels <- c(50, 75, 95)
list <- vector(mode="list", length = 2)
list[[1]] <- as.image.SpatialGridDataFrame(vud_points[[1]])
list[[2]] <- as.image.SpatialGridDataFrame(vud_points[[2]])
# 9. Plot
par(mfrow = c(2, 1))
image(vud_points[[1]])
contour(list[[1]], add=TRUE, levels=levels)
image(vud_points[[2]])
contour(list[[2]], add=TRUE, levels=levels)
# 10. Get vertices
vkde_points <- getverticeshr(kud_points, percent = 50,
unin = 'm', unout='m2')
plot(vkde_points)