Я использую neo4j-spark-connector , и кажется, что я не могу получить данные как Dataframe
. (Я могу получить данные как JavaRDD
и успешно с ними работать.)
Мой исходный код для загрузки и использования Dataframe
выглядит следующим образом:
Dataset<Row> neo4jDF = neo4j.cypher("match (n:NodeType1) return properties(n)", a).loadDataFrame();
Dataset<Row> df2 = //load df2
neo4jDF.createOrReplaceTempView("neo4jtable");
df2.createOrReplaceTempView("df2table");
Dataset<Row> joinedData = ss.sql("SELECT * from df2table, neo4jtable WHERE df2table.id = neo4jtable.id");
Но это давало мне следующее исключение:
Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found: neo4jtable; line 1 pos 26
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:449)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:468)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:453)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:60)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321)
(omitted some stacktrace, should I add?)
Поэтому я удалил все, что связано с присоединением, добавил простой Dataframe.show()
вызов:
Dataset<Row> neo4jDF = neo4j.cypher("match (n:NodeType1) return properties(n)", a).loadDataFrame();
neo4jDF.show();
Но теперь я получаю следующее исключение:
18/05/16 18:54:12 ERROR Executor: Exception in task 0.0 in stage 2.0 (TID 2)
java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true) AS properties(n)#0
+- if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
:- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt
: :- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
: : +- input[0, org.apache.spark.sql.Row, true]
: +- 0
:- null
+- staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
+- validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType)
+- getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n))
+- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
+- input[0, org.apache.spark.sql.Row, true]
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:279)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:276)
... 17 more
18/05/16 18:54:12 WARN TaskSetManager: Lost task 0.0 in stage 2.0 (TID 2, localhost): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true) AS properties(n)#0
+- if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
:- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt
: :- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
: : +- input[0, org.apache.spark.sql.Row, true]
: +- 0
:- null
+- staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
+- validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType)
+- getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n))
+- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
+- input[0, org.apache.spark.sql.Row, true]
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:279)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:276)
... 17 more
18/05/16 18:54:12 ERROR TaskSetManager: Task 0 in stage 2.0 failed 1 times; aborting job
18/05/16 18:54:12 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
18/05/16 18:54:12 INFO TaskSchedulerImpl: Cancelling stage 2
18/05/16 18:54:12 INFO DAGScheduler: ResultStage 2 (show at Neo4jSparkRDDDemo2.java:85) failed in 0.345 s
18/05/16 18:54:12 INFO DAGScheduler: Job 2 failed: show at Neo4jSparkRDDDemo2.java:85, took 0.369209 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 2, localhost): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true) AS properties(n)#0
+- if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
:- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt
: :- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
: : +- input[0, org.apache.spark.sql.Row, true]
: +- 0
:- null
+- staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
+- validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType)
+- getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n))
+- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
+- input[0, org.apache.spark.sql.Row, true]
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:279)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:276)
... 17 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39)
at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2183)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2532)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2182)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2189)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1925)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1924)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2562)
at org.apache.spark.sql.Dataset.head(Dataset.scala:1924)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2139)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:239)
at org.apache.spark.sql.Dataset.show(Dataset.scala:526)
at org.apache.spark.sql.Dataset.show(Dataset.scala:486)
at org.apache.spark.sql.Dataset.show(Dataset.scala:495)
at Neo4jSparkRDDDemo2.main(Neo4jSparkRDDDemo2.java:85)
Caused by: java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true) AS properties(n)#0
+- if (assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
:- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object).isNullAt
: :- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
: : +- input[0, org.apache.spark.sql.Row, true]
: +- 0
:- null
+- staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType), true)
+- validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n)), StringType)
+- getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object), 0, properties(n))
+- assertnotnull(input[0, org.apache.spark.sql.Row, true], top level row object)
+- input[0, org.apache.spark.sql.Row, true]
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:279)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at org.apache.spark.sql.SparkSession$$anonfun$5.apply(SparkSession.scala:537)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: java.util.Collections$UnmodifiableMap is not a valid external type for schema of string
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:276)
... 17 more
Что здесь не так?
Обновление
Я могу получить данные как JavaRDD<Row>
, преобразовать их в JavaRDD<CustomClass>
и затем преобразовать этот JavaRDD<CustomClass>
экземпляр в Dataset<Row>
экземпляр. Но тогда почему сам соединитель не возвращает набор данных успешно?