Я пытаюсь использовать модель LogisticRegression от scikit-learn для решения Excercise 2 из курса машинного обучения Эндрю Нг на Coursera.Но результат, который я получаю, неверен:
1) Коэффициенты результата не совпадают с ответами:
Что я получаю с моделью
Что я должен получить согласно ответам
[- 25,16, 0,21, 0,20]
вы можете увидеть на графике ( неверный график ), эта граница решения кажется немного ниже границы решения интуитивно.
2) Результат графика кажется неверным
Как видите, граница принятия решения ниже
LogisticRegression
Ответ
МОЙ КОД:
% matplotlib notebook
# IMPORT DATA
ex2_folder = 'machine-learning-ex2/ex2'
input_1 = pd.read_csv(folder + ex2_folder +'/ex2data1.txt', header = None)
X = input_1[[0,1]]
y = input_1[2]
# IMPORT AND FIT MODEL
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(fit_intercept = True)
model.fit(X,y)
print('Intercept (Theta 0: {}). Coefficients: {}'.format(model.intercept_, model.coef_))
# CALCULATE GRID
n = 5
xx1, xx2 = np.mgrid[25:101:n, 25:101:n]
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = model.predict_proba(grid)[:, 1]
probs = probs.reshape(xx1.shape)
# PLOTTING
f = plt.figure()
ax = plt.gca()
for outcome in [0,1]:
xo = 'yo' if outcome == 0 else 'k+'
selection = y == outcome
plt.plot(X.loc[selection, 0],X.loc[selection,1],xo, mec = 'k')
plt.xlim([25,100])
plt.ylim([25,100])
plt.xlabel('Exam 1 Score')
plt.ylabel('Exam 2 Score')
plt.title('Exam 1 & 2 and admission outcome')
contour = ax.contourf(xx1,xx2, probs, 100, cmap="RdBu",
vmin=0, vmax=1)
ax_c = f.colorbar(contour)
ax_c.set_label("$P(y = 1)$")
ax_c.set_ticks([0, .25, .5, .75, 1])
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='b', alpha = 0.3);
plt.plot(xx1[probs > 0.5], xx2[probs > 0.5],'.b', alpha = 0.3)
ССЫЛКИ
DataFileв формате txt
PDF Задачи и решения в Octave