Использование cor(mtcars, method='pearson')
создает матрицу, показывающую корреляции Пирсона для всех переменных в mtcars
против всех других переменных в mtcars
.Например:
head(cor(mtcars, method='pearson'))
mpg cyl disp hp drat wt qsec vs am gear
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.6811719 -0.8676594 0.41868403 0.6640389 0.5998324 0.4802848
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.6999381 0.7824958 -0.59124207 -0.8108118 -0.5226070 -0.4926866
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.7102139 0.8879799 -0.43369788 -0.7104159 -0.5912270 -0.5555692
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.4487591 0.6587479 -0.70822339 -0.7230967 -0.2432043 -0.1257043
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.0000000 -0.7124406 0.09120476 0.4402785 0.7127111 0.6996101
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.7124406 1.0000000 -0.17471588 -0.5549157 -0.6924953 -0.5832870
carb
mpg -0.5509251
cyl 0.5269883
disp 0.3949769
hp 0.7498125
drat -0.0907898
wt 0.4276059
Как я могу получить ту же матрицу выше, за исключением того, что вместо каждого значения, являющегося корреляцией Пирсона между каждой переменной, это значение r.squared
из линейной модели?Так, например, первый столбец, вторая строка будут такими же, как summary(lm(mtcars$mpg~ mtcars$cyl))$r.squared
.Спасибо